Title: | Algorithms for Quantitative Pedology |
---|---|
Description: | The Algorithms for Quantitative Pedology (AQP) project was started in 2009 to organize a loosely-related set of concepts and source code on the topic of soil profile visualization, aggregation, and classification into this package (aqp). Over the past 8 years, the project has grown into a suite of related R packages that enhance and simplify the quantitative analysis of soil profile data. Central to the AQP project is a new vocabulary of specialized functions and data structures that can accommodate the inherent complexity of soil profile information; freeing the scientist to focus on ideas rather than boilerplate data processing tasks <doi:10.1016/j.cageo.2012.10.020>. These functions and data structures have been extensively tested and documented, applied to projects involving hundreds of thousands of soil profiles, and deeply integrated into widely used tools such as SoilWeb <https://casoilresource.lawr.ucdavis.edu/soilweb-apps>. Components of the AQP project (aqp, soilDB, sharpshootR, soilReports packages) serve an important role in routine data analysis within the USDA-NRCS Soil Science Division. The AQP suite of R packages offer a convenient platform for bridging the gap between pedometric theory and practice. |
Authors: | Dylan Beaudette [aut, cre], Pierre Roudier [aut, ctb], Andrew Brown [aut, ctb] |
Maintainer: | Dylan Beaudette <[email protected]> |
License: | GPL (>= 3) |
Version: | 2.1.0 |
Built: | 2025-01-07 04:25:05 UTC |
Source: | https://github.com/ncss-tech/aqp |
The aqp (Algorithms for Quantitative Pedology) package for R was developed to address some of the difficulties associated with processing soils information, specifically related to visualization, aggregation, and classification of soil profile data. This package is based on a mix of S3/S4 functions and classes, and most functions use basic dataframes as input, where rows represent soil horizons and columns define properties of those horizons. Common to most functions are the requirements that horizon boundaries are defined as depth from 0, and that profiles are uniquely defined by an id column. The aqp package defines an S4 class, "SoilProfileCollection", for storage of profile-level metadata, as well as summary, print, and plotting methods that have been customized for common tasks related to soils data.
Demos: demo(aqp)
Dylan E. Beaudette [email protected], Pierre Roudier, Andrew G. Brown
depths<-()
, SoilProfileCollection()
, sp1
, sp2
, sp3
, sp4
, sp5
, sp6
You can access the contents of a SoilProfileCollection by profile and horizon "index", i
and j
, respectively: spc[i, j, ...]
. Subset operations are propagated to other slots (such as diagnostics or spatial) when they result in removal of sites from a collection.
i
refers to the profile position within the collection. By default the order is based on the C SORT order of the variable that you specified as your unique profile ID at time of object construction. Note that if your ID variable was numeric, then it has been sorted as a character.
j
refers to the horizon or "slice" index. This index is most useful when either a) working with slice
'd SoilProfileCollection or b) working with single-profile collections. j
returns the layer in the specified index positions for all profiles in a collection.
...
is an area to specify an expression that is evaluated in the subset. Currently supported
.LAST
(last horizon in each profile): return the last horizon from each profile. This uses i
but ignores the regular j
index.
.FIRST
(first horizon in each profile): return the last horizon from each profile. This uses i
but ignores the regular j
index.
.HZID
(horizon index): return the horizon indices corresponding to i
+j
+...
("k") constraints
.NHZ
(number of horizons): return the number of horizons in the profiles resulting from i
+j
+...
("k") constraints
## S4 method for signature 'SoilProfileCollection' x[i, j, ..., drop = TRUE]
## S4 method for signature 'SoilProfileCollection' x[i, j, ..., drop = TRUE]
x |
a SoilProfileCollection |
i |
a numeric or logical value denoting profile indices to select in a subset |
j |
a numeric or logical value denoting horizon indices to select in a subset |
... |
non-standard expressions to evaluate in a subset |
drop |
Default: |
Get the data from a column accessed by name. Column names other than profile ID are not shared between site and horizons.
Bonus: [[
gives access to all site and horizon level variables in tab complete for RStudio using the magrittr pipe operator!
## S4 method for signature 'SoilProfileCollection' x[[i, j]]
## S4 method for signature 'SoilProfileCollection' x[[i, j]]
x |
a SoilProfileCollection |
i |
an expression resolving to a single column name in site or horizon table |
j |
(not used) |
data(sp2) depths(sp2) <- id ~ top + bottom site(sp2) <- ~ surface # get with [[ sp2[['surface']] # get using "unknown" expression: # "2nd + 3rd horizon column names" for(i in horizonNames(sp2)[2:3]) print(sp2[[i]]) data(sp5) # some column names to work with rgb.columns <- c("R25","G25","B25") res <- lapply(rgb.columns, function(x) { # [[ allows you to access column names in a loop round(sp5[[x]] * 255) }) # rename scaled results names(res) <- paste0(rgb.columns,"_scl") # add horizon ID to results result <- data.frame(hzID = hzID(sp5), do.call('cbind', res)) head(result) # join result back into horizons horizons(sp5) <- result
data(sp2) depths(sp2) <- id ~ top + bottom site(sp2) <- ~ surface # get with [[ sp2[['surface']] # get using "unknown" expression: # "2nd + 3rd horizon column names" for(i in horizonNames(sp2)[2:3]) print(sp2[[i]]) data(sp5) # some column names to work with rgb.columns <- c("R25","G25","B25") res <- lapply(rgb.columns, function(x) { # [[ allows you to access column names in a loop round(sp5[[x]] * 255) }) # rename scaled results names(res) <- paste0(rgb.columns,"_scl") # add horizon ID to results result <- data.frame(hzID = hzID(sp5), do.call('cbind', res)) head(result) # join result back into horizons horizons(sp5) <- result
Add or change the data from a column accessed by name. Column names other
than profile ID are not shared between site and horizons. The benefit of
using double bracket setter over $
is that name
can be
calculated, whereas with $
, it must be known a priori and hard coded.
When using the double bracket setter the length of input and output matching either the number of sites or number of horizons is used to determine which slot new columns are assigned to.
## S4 replacement method for signature 'SoilProfileCollection' x[[i]] <- value
## S4 replacement method for signature 'SoilProfileCollection' x[[i]] <- value
x |
a SoilProfileCollection |
i |
an expression resolving to a single column name in site or horizon table- |
value |
New value to replace – unit length or equal in length to number of sites or horizons in the collection. |
Get the data from a column accessed by name x$name
. Column names other than profile ID are not shared between site and horizons.
## S4 method for signature 'SoilProfileCollection' x$name
## S4 method for signature 'SoilProfileCollection' x$name
x |
a SoilProfileCollection |
name |
a single column name in site or horizon table |
data(sp1) depths(sp1) <- id ~ top + bottom # get data from a column by name (prop) sp1$prop
data(sp1) depths(sp1) <- id ~ top + bottom # get data from a column by name (prop) sp1$prop
Set the data in a column accessed by name spc$name
. Column names other than profile ID are not shared between site and horizons.
When using $<-
, the length of input and output matching either the number of sites or number of horizons is used to determine which slot new columns are assigned to. Use site(x)$name <- value
or horizons(x)$name <- value
to be explicit about which slot is being accessed.
## S4 replacement method for signature 'SoilProfileCollection' x$name <- value
## S4 replacement method for signature 'SoilProfileCollection' x$name <- value
x |
a SoilProfileCollection |
name |
a single column name in site or horizon table |
value |
Replacement values: unit length or equal to number of horizons or sites. |
Fix old-style organic horizon depths or depths with a non-standard datum by the "depth accumulation" method.
accumulateDepths( x, id = NULL, hzdepths = NULL, hzname = NULL, hzdatum = 0, seqnum = NULL, pattern = "O", fix = TRUE )
accumulateDepths( x, id = NULL, hzdepths = NULL, hzname = NULL, hzdatum = 0, seqnum = NULL, pattern = "O", fix = TRUE )
x |
A |
id |
unique profile ID. Default: |
hzdepths |
character vector containing horizon top and bottom depth column names. Default: |
hzname |
character vector containing horizon designation or other label column names. Default: |
hzdatum |
a numeric vector to add to accumulated depths. Default: |
seqnum |
Optional: character vector containing record "sequence number" column name; used in-lieu of |
pattern |
pattern to search for in |
fix |
apply adjustments to missing ( |
The "depth accumulation" method calculates thicknesses of individual horizons and then cumulative sums them after putting them in id
+ top depth order. The routine tries to determine context based on hzname
and pattern
. The main transformation is if a top depth is deeper than the bottom depth, the depths are reflected on the Z-axis (made negative). The data are then id
+ top depth sorted again, the thickness calculated and accumulated to replace the old depths.
This function uses several heuristics to adjust data before transformation and thickness calculation:
matches of pattern
where both top and bottom depth NA
-> [0,1]
[top,bottom]
depth
REMOVE horizons that do not match pattern
where both top and bottom depths NA
hzname
handling with the sequence column argument seqnum
if seqnum
column specified "first record with NA
hzname
" is considered a pattern
match if seqnum == 1
fix
argument: Add 1 cm to bottom-most horizons with NA
bottom depth
Add 1 cm thickness to horizons with top and bottom depth equal
Add 1 cm thickness to horizons with NA
top depth and bottom depth 0
A horizon-level data.frame
, suitable for promoting to SPC with depths<-
, or a SoilProfileCollection
, depending on the class of x
.
# example using hzdatum argument data(sp4) depths(sp4) <- id ~ top + bottom hz <- accumulateDepths(sp4, id = "id", hzdepths = c("top", "bottom"), hzname = "name", hzdatum = 5 * 1:length(sp4)) plot(hz) # example using old-style O horizons hz <- read.table(text = "peiidref hzdept hzdepb hzname seqnum phiid 1 11 0 5 A 2 295 2 11 1 0 Oe 1 294 3 11 5 13 C1 3 296 4 11 13 58 C2 4 297 5 11 58 152 C3 5 298 6 13 0 5 A 2 303 7 13 1 0 Oe 1 302 8 13 5 25 Bw 3 304 9 13 25 61 C 4 305 10 13 61 NA R 5 306 11 136 0 13 A1 3 695 12 136 1 0 Oe 2 694 13 136 2 1 Oi 1 693 14 136 13 61 C1 4 696 15 136 61 76 C2 5 697") depths(hz) <- peiidref ~ hzdept + hzdepb hz_fixed <- accumulateDepths(hz, id = "peiidref", hzdepths = c("hzdept", "hzdepb"), hzname = "hzname") is_valid <- checkHzDepthLogic(hz_fixed)$valid test0 <- subset(hz_fixed, !is_valid) test1 <- subset(hz_fixed, is_valid) origO <- subset(hz, grepl("O", hzname)) fixedO <- subset(hz_fixed, grepl("O", hzname)) par(mfrow=c(2,1), mar=c(0,0,3,2)) plotSPC(origO, max.depth = 25) plotSPC(fixedO, max.depth = 25)
# example using hzdatum argument data(sp4) depths(sp4) <- id ~ top + bottom hz <- accumulateDepths(sp4, id = "id", hzdepths = c("top", "bottom"), hzname = "name", hzdatum = 5 * 1:length(sp4)) plot(hz) # example using old-style O horizons hz <- read.table(text = "peiidref hzdept hzdepb hzname seqnum phiid 1 11 0 5 A 2 295 2 11 1 0 Oe 1 294 3 11 5 13 C1 3 296 4 11 13 58 C2 4 297 5 11 58 152 C3 5 298 6 13 0 5 A 2 303 7 13 1 0 Oe 1 302 8 13 5 25 Bw 3 304 9 13 25 61 C 4 305 10 13 61 NA R 5 306 11 136 0 13 A1 3 695 12 136 1 0 Oe 2 694 13 136 2 1 Oi 1 693 14 136 13 61 C1 4 696 15 136 61 76 C2 5 697") depths(hz) <- peiidref ~ hzdept + hzdepb hz_fixed <- accumulateDepths(hz, id = "peiidref", hzdepths = c("hzdept", "hzdepb"), hzname = "hzname") is_valid <- checkHzDepthLogic(hz_fixed)$valid test0 <- subset(hz_fixed, !is_valid) test1 <- subset(hz_fixed, is_valid) origO <- subset(hz, grepl("O", hzname)) fixedO <- subset(hz_fixed, grepl("O", hzname)) par(mfrow=c(2,1), mar=c(0,0,3,2)) plotSPC(origO, max.depth = 25) plotSPC(fixedO, max.depth = 25)
Add depth brackets to soil profile sketches.
addBracket( x, label.cex = 0.75, tick.length = 0.05, arrow.length = 0.05, offset = -0.3, missing.bottom.depth = NULL, ... )
addBracket( x, label.cex = 0.75, tick.length = 0.05, arrow.length = 0.05, offset = -0.3, missing.bottom.depth = NULL, ... )
x |
|
label.cex |
scaling factor for label font |
tick.length |
length of bracket "tick" mark |
arrow.length |
length of arrowhead |
offset |
left-hand offset from each profile |
missing.bottom.depth |
distance (in depth units) to extend brackets that are missing a lower depth (defaults to max depth of collection) |
... |
further arguments passed on to |
x
may contain multiple records per profile. Additional examples can be found in this tutorial.
This is a low-level
plotting function: you must first plot a SoilProfileCollection
object before using this function.
D.E. Beaudette
# sample data data(sp1) # add color vector sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom # plot profiles par(mar = c(0, 0, 0, 1)) plotSPC(sp1, width = 0.3) # extract min--max depths associated with all A horizons # result is a single-row data.frame / profile combinedBracket <- function(i) { h <- horizons(i) idn <- idname(i) this.id <- h[[idn]][1] idx <- grep('^A', h$name) res <- data.frame( id = this.id, top = min(h$top[idx]), bottom = max(h$bottom[idx], na.rm=TRUE) ) names(res)[1] <- idn return(res) } # return matching horizon top / bottom depths for A or C horizons # result is a 0 or more row data.frame / profile individualBrackets <- function(i) { h <- horizons(i) idn <- idname(i) this.id <- h[[idn]][1] idx <- grep('^A|^C', h$name) res <- data.frame( id = this.id, top = h$top[idx], bottom = h$bottom[idx] ) names(res)[1] <- idn return(res) } # combined brackets b1 <- profileApply(sp1, combinedBracket, frameify = TRUE) # individual brackets b2 <- profileApply(sp1, individualBrackets, frameify = TRUE) # plot in reverse order plotSPC(sp1, plot.order = rev(1:length(sp1)), width = 0.25) # note that plotting order is derived from the call to `plotSPC(sp1)` addBracket(b1, col='red', offset = -0.35) # plot in reverse order plotSPC(sp1, plot.order = rev(1:length(sp1)), width = 0.25) # note that plotting order is derived from the call to `plotSPC(sp1)` addBracket(b2, col='red', offset = -0.35)
# sample data data(sp1) # add color vector sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom # plot profiles par(mar = c(0, 0, 0, 1)) plotSPC(sp1, width = 0.3) # extract min--max depths associated with all A horizons # result is a single-row data.frame / profile combinedBracket <- function(i) { h <- horizons(i) idn <- idname(i) this.id <- h[[idn]][1] idx <- grep('^A', h$name) res <- data.frame( id = this.id, top = min(h$top[idx]), bottom = max(h$bottom[idx], na.rm=TRUE) ) names(res)[1] <- idn return(res) } # return matching horizon top / bottom depths for A or C horizons # result is a 0 or more row data.frame / profile individualBrackets <- function(i) { h <- horizons(i) idn <- idname(i) this.id <- h[[idn]][1] idx <- grep('^A|^C', h$name) res <- data.frame( id = this.id, top = h$top[idx], bottom = h$bottom[idx] ) names(res)[1] <- idn return(res) } # combined brackets b1 <- profileApply(sp1, combinedBracket, frameify = TRUE) # individual brackets b2 <- profileApply(sp1, individualBrackets, frameify = TRUE) # plot in reverse order plotSPC(sp1, plot.order = rev(1:length(sp1)), width = 0.25) # note that plotting order is derived from the call to `plotSPC(sp1)` addBracket(b1, col='red', offset = -0.35) # plot in reverse order plotSPC(sp1, plot.order = rev(1:length(sp1)), width = 0.25) # note that plotting order is derived from the call to `plotSPC(sp1)` addBracket(b2, col='red', offset = -0.35)
Annotate diagnostic features within a sketch of soil profiles.
addDiagnosticBracket( s, kind, feature = "featkind", top = "featdept", bottom = "featdepb", ... )
addDiagnosticBracket( s, kind, feature = "featkind", top = "featdept", bottom = "featdepb", ... )
s |
|
kind |
filter applied to |
feature |
column name containing feature kind |
top |
column name containing feature top depth |
bottom |
column name containing feature top depth |
... |
additional arguments passed to |
Additional examples can be found in this tutorial.
This is a low-level
plotting function: you must first plot a SoilProfileCollection
object before using this function.
D.E. Beaudette
Symbolize volume fraction on an existing soil profile collection plot.
addVolumeFraction( x, colname, res = 10, cex.min = 0.1, cex.max = 0.5, pch = 1, col = "black" )
addVolumeFraction( x, colname, res = 10, cex.min = 0.1, cex.max = 0.5, pch = 1, col = "black" )
x |
a |
colname |
character vector of length 1, naming the column containing volume fraction data (horizon-level attribute). Values should be within 0-100 percent. |
res |
integer, resolution of the grid used to symbolize volume fraction |
cex.min |
minimum symbol size |
cex.max |
maximum symbol size |
pch |
integer, plotting character code |
col |
symbol color, either a single color or as many colors as there are horizons in |
This function can only be called after plotting a SoilProfileCollection
object. Details associated with a call to plotSPC()
are automatically accounted for within this function: e.g. plot.order
, width
, etc..
It may be necessary to adjust both res
, cex.min
, and cex.max
for optimal legibility.
D.E. Beaudette
Summarize soil color data, weighted by occurrence and horizon thickness.
aggregateColor( x, groups = "genhz", col = "soil_color", colorSpace = "CIE2000", k = NULL, profile_wt = NULL, mixingMethod = c("estimate", "exact") )
aggregateColor( x, groups = "genhz", col = "soil_color", colorSpace = "CIE2000", k = NULL, profile_wt = NULL, mixingMethod = c("estimate", "exact") )
x |
a |
groups |
the name of a horizon or site attribute used to group horizons, see examples |
col |
the name of a horizon-level attribute with soil color specified in hexadecimal (i.e. "#rrggbb") |
colorSpace |
(now deprecated, removed in aqp 2.1) 'CIE2000' used for all cases |
k |
single integer specifying the number of colors discretized via PAM ( |
profile_wt |
the name of a site-level attribute used to modify weighting, e.g. area |
mixingMethod |
method used to estimate "aggregate" soil colors, see |
Weights are computed by:
w_i = sqrt(sum(thickness_i)) * n_i
where w_i
is the weight associated with color i
, thickness_i
is the total thickness of all horizons associated with the color i
, and n_i
is the number of horizons associated with color i
. Weights are computed within groups specified by groups
.
A list with the following components:
scaled.data |
a |
aggregate.data |
a |
D.E. Beaudette
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # load some example data data(sp1, package='aqp') # upgrade to SoilProfileCollection and convert Munsell colors sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # generalize horizon names n <- c('O', 'A', 'B', 'C') p <- c('O', 'A', 'B', 'C') sp1$genhz <- generalize.hz(sp1$name, n, p) # aggregate colors over horizon-level attribute: 'genhz' a <- aggregateColor(sp1, groups = 'genhz', col = 'soil_color') # check results str(a) ## Not run: # aggregate colors over site-level attribute: 'group' a <- aggregateColor(sp1, groups = 'group', col = 'soil_color') # aggregate colors over site-level attribute: 'group' # discretize colors to 4 per group a <- aggregateColor(sp1, groups = 'group', col = 'soil_color', k = 4) # aggregate colors over depth-slices s <- dice(sp1, c(5, 10, 15, 25, 50, 100, 150) ~ soil_color) s$slice <- paste0(s$top, ' cm') s$slice <- factor(s$slice, levels=guessGenHzLevels(s, 'slice')$levels) a <- aggregateColor(s, groups = 'slice', col = 'soil_color') # optionally plot with helper function if(require(sharpshootR)) aggregateColorPlot(a) # a more interesting example data(loafercreek, package = 'soilDB') # generalize horizon names using REGEX rules n <- c('Oi', 'A', 'BA','Bt1','Bt2','Bt3','Cr','R') p <- c('O', '^A$|Ad|Ap|AB','BA$|Bw', 'Bt1$|^B$','^Bt$|^Bt2$','^Bt3|^Bt4|CBt$|BCt$|2Bt|2CB$|^C$','Cr','R') loafercreek$genhz <- generalize.hz(loafercreek$hzname, n, p) # remove non-matching generalized horizon names loafercreek$genhz[loafercreek$genhz == 'not-used'] <- NA loafercreek$genhz <- factor(loafercreek$genhz) a <- aggregateColor(loafercreek, 'genhz') # plot results with helper function par(mar=c(1,4,4,1)) aggregateColorPlot(a, print.n.hz = TRUE) # inspect aggregate data a$aggregate.data ## End(Not run)
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # load some example data data(sp1, package='aqp') # upgrade to SoilProfileCollection and convert Munsell colors sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # generalize horizon names n <- c('O', 'A', 'B', 'C') p <- c('O', 'A', 'B', 'C') sp1$genhz <- generalize.hz(sp1$name, n, p) # aggregate colors over horizon-level attribute: 'genhz' a <- aggregateColor(sp1, groups = 'genhz', col = 'soil_color') # check results str(a) ## Not run: # aggregate colors over site-level attribute: 'group' a <- aggregateColor(sp1, groups = 'group', col = 'soil_color') # aggregate colors over site-level attribute: 'group' # discretize colors to 4 per group a <- aggregateColor(sp1, groups = 'group', col = 'soil_color', k = 4) # aggregate colors over depth-slices s <- dice(sp1, c(5, 10, 15, 25, 50, 100, 150) ~ soil_color) s$slice <- paste0(s$top, ' cm') s$slice <- factor(s$slice, levels=guessGenHzLevels(s, 'slice')$levels) a <- aggregateColor(s, groups = 'slice', col = 'soil_color') # optionally plot with helper function if(require(sharpshootR)) aggregateColorPlot(a) # a more interesting example data(loafercreek, package = 'soilDB') # generalize horizon names using REGEX rules n <- c('Oi', 'A', 'BA','Bt1','Bt2','Bt3','Cr','R') p <- c('O', '^A$|Ad|Ap|AB','BA$|Bw', 'Bt1$|^B$','^Bt$|^Bt2$','^Bt3|^Bt4|CBt$|BCt$|2Bt|2CB$|^C$','Cr','R') loafercreek$genhz <- generalize.hz(loafercreek$hzname, n, p) # remove non-matching generalized horizon names loafercreek$genhz[loafercreek$genhz == 'not-used'] <- NA loafercreek$genhz <- factor(loafercreek$genhz) a <- aggregateColor(loafercreek, 'genhz') # plot results with helper function par(mar=c(1,4,4,1)) aggregateColorPlot(a, print.n.hz = TRUE) # inspect aggregate data a$aggregate.data ## End(Not run)
Estimate the most-likely depth to contact within a collection of soil profiles. Consider getSoilDepthClass
followed by group-wise percentile estimation as a faster alternative.
aggregateSoilDepth( x, groups, crit.prob = 0.9, name = hzdesgnname(x), p = "Cr|R|Cd", ... )
aggregateSoilDepth( x, groups, crit.prob = 0.9, name = hzdesgnname(x), p = "Cr|R|Cd", ... )
x |
a |
groups |
the name of a site-level attribute that defines groups of profiles within a collection |
crit.prob |
probability cutoff used to determine where the most likely depth to contact will be, e.g. 0.9 translates to 90% of profiles are shallower than this depth |
name |
horizon-level attribute where horizon designation is stored, defaults to |
p |
a REGEX pattern that matches non-soil genetic horizons |
... |
additional arguments to |
This function computes a probability-based estimate of soil depth by group. If no grouping variable exists, a dummy value can be used to compute a single estimate. The crit.prob
argument sets the critical probability (e.g. 0.9) at which soil depth within a group of profiles is determined. For example, a crit.prob
of 0.95 might result in an estimated soil depth (e.g. 120cm) where 95% of the profiles (by group) had depths that were less than or equal to 120cm.
A data.frame
is returned, with as many rows as there are unique group labels, as specified in groups
.
D.E. Beaudette
data(sp1) depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # set horizon designation in SPC hzdesgnname(sp1) <- 'name' aggregateSoilDepth(sp1, 'group', crit.prob = 0.9)
data(sp1) depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # set horizon designation in SPC hzdesgnname(sp1) <- 'name' aggregateSoilDepth(sp1, 'group', crit.prob = 0.9)
This function is used to support relative positioning of soil profiles by plotSPC
, based on transect or gradient values typically associated with a site level attribute (e.g. elevation). Gradient values specified in x
are translated to the range used by plotSPC
(usually 1, length(SPC)
) specified in x.min
and x.max
.
alignTransect(x, x.min, x.max, fix = TRUE, ...)
alignTransect(x, x.min, x.max, fix = TRUE, ...)
x |
numeric vector, describing values along a transect: distance, elevation, climatic variables, etc.. Typically sourced from the site level attributes of a |
x.min |
numeric, lower boundary to relative position scale |
x.max |
numeric, upper boundary to relative position scale |
fix |
logical, attempt fixing overlapping positions with |
... |
additional arguments to |
See the Pair-Wise Distances by Generalized Horizon Labels tutorial for additional examples.
list
containing:
grad
: values of x
in ascending order
order
: ordering vector of x
relative.pos
: elements of x
translated to the new relative scale defined by x.min
and x.max
data("sierraTransect") # split transects g <- subset(sierraTransect, transect == 'Granite') a <- subset(sierraTransect, transect == 'Andesite') g.p <- alignTransect(g$elev, x.min = 1, x.max = length(g), fix = FALSE) a.p <- alignTransect(a$elev, x.min = 1, x.max = length(a), fix = FALSE) op <- par(mar=c(2,0,0,2), mfrow=c(2,1)) plotSPC(g, width=0.25, name.style='center-center', cex.names=0.75, relative.pos = g.p$relative.pos, plot.order = g.p$order) axis(1, at = g.p$relative.pos, labels = g.p$grad, line = -1.5) plotSPC(a, width=0.25, name.style='center-center', cex.names=0.75, relative.pos = a.p$relative.pos, plot.order = a.p$order) axis(1, at = a.p$relative.pos, labels = a.p$grad, line = -1.5) par(op)
data("sierraTransect") # split transects g <- subset(sierraTransect, transect == 'Granite') a <- subset(sierraTransect, transect == 'Andesite') g.p <- alignTransect(g$elev, x.min = 1, x.max = length(g), fix = FALSE) a.p <- alignTransect(a$elev, x.min = 1, x.max = length(a), fix = FALSE) op <- par(mar=c(2,0,0,2), mfrow=c(2,1)) plotSPC(g, width=0.25, name.style='center-center', cex.names=0.75, relative.pos = g.p$relative.pos, plot.order = g.p$order) axis(1, at = g.p$relative.pos, labels = g.p$grad, line = -1.5) plotSPC(a, width=0.25, name.style='center-center', cex.names=0.75, relative.pos = a.p$relative.pos, plot.order = a.p$order) axis(1, at = a.p$relative.pos, labels = a.p$grad, line = -1.5) par(op)
Generic function to allocate soil properties to different classification schemes.
allocate( ..., to = c("FAO Salt Severity", "FAO Black Soil", "ST Diagnostic Features"), droplevels = FALSE )
allocate( ..., to = c("FAO Salt Severity", "FAO Black Soil", "ST Diagnostic Features"), droplevels = FALSE )
... |
arguments to specific allocation functions, see details and examples |
to |
character specifying the classification scheme: FAO Salt Severity, FAO Black Soil (see details for the required |
droplevels |
logical indicating whether to drop unused levels in factors. This is useful when the results have a large number of unused classes, which can waste space in tables and figures. |
This function is intended to allocate a set of soil properties to an established soil classification scheme, such as Salt Severity or Black Soil. Allocation is semantically different from classification. While classification is the 'act' of developing a grouping scheme, allocation is the assignment or identification of measurements to a established class (Powell, 2008).
Each classification scheme (to
argument) uses a different set of arguments.
FAO Salt Severity
EC: electrical conductivity column name, dS/m
pH: pH column name, saturated paste extract
ESP: exchangeable sodium percentage column name, percent
FAO Black Soils
object: a data.frame
or SoilProfileCollection
pedonid: pedon ID column name, required when object
is a data.frame
hztop: horizon top depth column name, required when object
is a data.frame
hzbot: horizon bottom depth column name, required when object
is a data.frame
OC: organic carbon column name, percent
m_chroma: moist Munsell chroma column name
m_value: moist Munsell value column name
d_value: dry Munsell value column name
CEC: cation exchange capacity column name (NH4OAc at pH 7), units of cmol(+)/kg soil
BS: base saturation column name (NH4OAc at pH 7), percent
tropical: logical, data are associated with "tropical soils"
ST Diagnostic Features
object: a data.frame
or SoilProfileCollection
pedonid: pedon ID column name, required when object
is a data.frame
hzname: horizon name column, required when object
is a data.frame
hztop: horizon top depth column name, required when object
is a data.frame
hzbot: horizon bottom depth column name, required when object
is a data.frame
texcl: soil texture class (USDA) column name
rupresblkcem: rupture resistance column name
m_value: moist Munsell value column name
m_chroma: moist Munsell chroma column name
d_value: dry Munsell value column name
BS: base saturation column name (method ??), percent
OC: organic carbon column name, percent
n_value: ??
featkind: ??
A vector or data.frame
object.
The results returned by allocate(to = "ST Diagnostic Features")
currently return a limited set of diagnostic features that are easily defined. Also, the logic implemented for some features does not include all the criteria defined in the Keys to Soil Taxonomy.
Stephen Roecker
Abrol, I., Yadav, J. & Massoud, F. 1988. Salt-affected soils and their management. No. Bulletin 39. Rome, FAO Soils.
FAO. 2006. Guidelines for soil description. Rome, Food and Agriculture Organization of the United Nations.
FAO. 2020. DEFINITION | What is a black soil? (online). (Cited 28 December 2020). http://www.fao.org/global-soil-partnership/intergovernmental-technical-panel-soils/gsoc17-implementation/internationalnetworkblacksoils/more-on-black-soils/definition-what-is-a-black-soil/es/
Powell, B., 2008. Classifying soil and land, in: McKenzie, N.J., Grundy, M.J., Webster, R., Ringrose-Voase, A.J. (Eds.), Guidelines for Survey Soil and Land Resources, Australian Soil and Land Survey Handbook Series. CSIRO, Melbourne, p. 572.
Richards, L.A. 1954. Diagnosis and Improvement of Saline and Alkali Soils. U. S. Government Printing Office. 166 pp.
Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, D.C.
# Salt Severity test <- expand.grid( EC = sort(sapply(c(0, 0.75, 2, 4, 8, 15, 30), function(x) x + c(0, -0.05, 0.05))), pH = c(8.1, 8.2, 8.3, 8.4, 8.5, 8.6), ESP = sort(sapply(c(0, 15, 30, 50, 70, 100), function(x) x + c(0, 0.1, -0.1))) ) test$ss <- with(test, allocate(EC = EC, pH = pH, ESP = ESP, to = "FAO Salt Severity")) table(test$ss) # Black Soil Category 1 (BS1) test <- expand.grid( dept = seq(0, 50, 10), OC = sort(sapply(c(0, 0.6, 1.2, 20, 40), function(x) x + c(0, -0.05, 0.05))), chroma_moist = 2:4, value_moist = 2:4, value_dry = 4:6, thickness = 24:26, CEC = 24:26, BS = 49:51, tropical = c(TRUE, FALSE) ) test$pedon_id <- rep(1:21870, each = 6) test$depb <- test$dept + 10 bs1 <- allocate(test, pedonid = "pedon_id", hztop = "dept", hzbot = "depb", OC = "OC", m_chroma = "chroma_moist", m_value = "value_moist", d_value = "value_dry", CEC = "CEC", BS = "BS", to = "FAO Black Soil" ) table(BS1 = bs1$BS1, BS2 = bs1$BS2) # SoilProfileCollection interface data(sp3) depths(sp3) <- id ~ top + bottom hzdesgnname(sp3) <- 'name' # fake base saturation horizons(sp3)$bs <- 75 plotSPC(sp3) allocate( sp3, to = 'FAO Black Soil', OC = 'tc', m_chroma = 'chroma', m_value = 'value', d_value = 'value', CEC = 'cec', BS = 'bs' ) # make a copy and edit horizon values x <- sp3 x$value <- 2 x$chroma <- 2 x$cec <- 26 x$tc <- 2 x$soil_color <- munsell2rgb(x$hue, x$value, x$chroma) plotSPC(x) allocate( x, to = 'FAO Black Soil', OC = 'tc', m_chroma = 'chroma', m_value = 'value', d_value = 'value', CEC = 'cec', BS = 'bs' ) # Soil Taxonomy Diagnostic Features data(sp1) sp1$texcl = gsub("gr|grv|cbv", "", sp1$texture) df <- allocate(object = sp1, pedonid = "id", hzname = "name", hzdept = "top", hzdepb = "bottom", texcl = "texcl", to = "ST Diagnostic Features" ) aggregate(featdept ~ id, data = df, summary)
# Salt Severity test <- expand.grid( EC = sort(sapply(c(0, 0.75, 2, 4, 8, 15, 30), function(x) x + c(0, -0.05, 0.05))), pH = c(8.1, 8.2, 8.3, 8.4, 8.5, 8.6), ESP = sort(sapply(c(0, 15, 30, 50, 70, 100), function(x) x + c(0, 0.1, -0.1))) ) test$ss <- with(test, allocate(EC = EC, pH = pH, ESP = ESP, to = "FAO Salt Severity")) table(test$ss) # Black Soil Category 1 (BS1) test <- expand.grid( dept = seq(0, 50, 10), OC = sort(sapply(c(0, 0.6, 1.2, 20, 40), function(x) x + c(0, -0.05, 0.05))), chroma_moist = 2:4, value_moist = 2:4, value_dry = 4:6, thickness = 24:26, CEC = 24:26, BS = 49:51, tropical = c(TRUE, FALSE) ) test$pedon_id <- rep(1:21870, each = 6) test$depb <- test$dept + 10 bs1 <- allocate(test, pedonid = "pedon_id", hztop = "dept", hzbot = "depb", OC = "OC", m_chroma = "chroma_moist", m_value = "value_moist", d_value = "value_dry", CEC = "CEC", BS = "BS", to = "FAO Black Soil" ) table(BS1 = bs1$BS1, BS2 = bs1$BS2) # SoilProfileCollection interface data(sp3) depths(sp3) <- id ~ top + bottom hzdesgnname(sp3) <- 'name' # fake base saturation horizons(sp3)$bs <- 75 plotSPC(sp3) allocate( sp3, to = 'FAO Black Soil', OC = 'tc', m_chroma = 'chroma', m_value = 'value', d_value = 'value', CEC = 'cec', BS = 'bs' ) # make a copy and edit horizon values x <- sp3 x$value <- 2 x$chroma <- 2 x$cec <- 26 x$tc <- 2 x$soil_color <- munsell2rgb(x$hue, x$value, x$chroma) plotSPC(x) allocate( x, to = 'FAO Black Soil', OC = 'tc', m_chroma = 'chroma', m_value = 'value', d_value = 'value', CEC = 'cec', BS = 'bs' ) # Soil Taxonomy Diagnostic Features data(sp1) sp1$texcl = gsub("gr|grv|cbv", "", sp1$texture) df <- allocate(object = sp1, pedonid = "id", hzname = "name", hzdept = "top", hzdepb = "bottom", texcl = "texcl", to = "ST Diagnostic Features" ) aggregate(featdept ~ id, data = df, summary)
This is an accessor and replacement method for the aqp_df_class
entry in the metadata slot. This entry is used internally by methods that interact with data.frame
objects and slots to ensure that the same class used to promote to the SoilProfileCollection initially is used throughout the process.
## S4 method for signature 'SoilProfileCollection' aqp_df_class(object) ## S4 replacement method for signature 'SoilProfileCollection' aqp_df_class(object) <- value
## S4 method for signature 'SoilProfileCollection' aqp_df_class(object) ## S4 replacement method for signature 'SoilProfileCollection' aqp_df_class(object) <- value
object |
a SoilProfileCollection |
value |
"data.frame", "data.table" or "tbl_df" |
Returns the top depth of the argillic horizon as a numeric vector.
argillic.clay.increase.depth(p, clay.attr = "clay")
argillic.clay.increase.depth(p, clay.attr = "clay")
p |
A single-profile |
clay.attr |
OPTIONAL: horizon attribute name referring to clay content.
default: |
Uses crit.clay.argillic
to determine threshold clay increase, and
get.increase.matrix
to determine where increase is met within a
vertical distance of 30 cm.
A numeric vector containing top depth of argillic horizon, if present, or NA.
Andrew Gene Brown
getArgillicBounds
, get.increase.matrix
,
crit.clay.argillic
data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group p <- sp1[1] attr <- 'prop' # clay contents foo <- argillic.clay.increase.depth(p, clay.attr = attr) foo
data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group p <- sp1[1] attr <- 'prop' # clay contents foo <- argillic.clay.increase.depth(p, clay.attr = attr) foo
as()
SoilProfileCollections can be coerced to other R object types using as(spc, 'type')
.
Possible endpoints include: list
, data.frame
, SpatialPointsDataFrame
and SpatialPoints
.
## S4 method for signature 'SoilProfileCollection' as.data.frame(x)
## S4 method for signature 'SoilProfileCollection' as.data.frame(x)
x |
a SoilProfileCollection |
list
data.frame
tbl_df
data.table
SpatialPointsDataFrame
sf
SpatialPoints
# load example data stored as SoilProfileCollection data(sp5) # sp5 str(sp5) # list output str(as(sp5, 'list')) # data.frame output str(as(sp5, 'data.frame')) # Spatial Objects # make some random coordinate data for each profile sp5$x <- sp5$y <- rnorm(length(sp5)) initSpatial(sp5, crs = "OGC:CRS84") <- ~ x + y if (requireNamespace("sf")) { # sf output str(as(sp5, 'sf')) # SpatialPointsDataFrame output str(as(sp5, 'SpatialPointsDataFrame')) # SpatialPoints output str(as(sp5, 'SpatialPoints')) }
# load example data stored as SoilProfileCollection data(sp5) # sp5 str(sp5) # list output str(as(sp5, 'list')) # data.frame output str(as(sp5, 'data.frame')) # Spatial Objects # make some random coordinate data for each profile sp5$x <- sp5$y <- rnorm(length(sp5)) initSpatial(sp5, crs = "OGC:CRS84") <- ~ x + y if (requireNamespace("sf")) { # sf output str(as(sp5, 'sf')) # SpatialPointsDataFrame output str(as(sp5, 'SpatialPointsDataFrame')) # SpatialPoints output str(as(sp5, 'SpatialPoints')) }
Calculate Redness Index after Barron & Torrent (1986) "Use of the Kubelka—Munk Theory to Study the Influence of Iron Oxides on Soil Colour" using Munsell colors converted to LAB. DOI: 10.1111/j.1365-2389.1986.tb00382.x. Accepts vectorized inputs for hue, value and chroma, produces vector output.
barron.torrent.redness.LAB(hue, value, chroma)
barron.torrent.redness.LAB(hue, value, chroma)
hue |
A character vector containing Munsell hues (e.g. "7.5YR") |
value |
A numeric vector containing Munsell values |
chroma |
A numeric vector containing Munsell chromas |
A numeric vector of horizon redness index (higher values = redder).
Andrew G. Brown
Barron, V. and Torrent, J. (1986), Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour. Journal of Soil Science, 37: 499-510. doi:10.1111/j.1365-2389.1986.tb00382.x
Simulate realistic sand/silt/clay values (a composition) using multivariate Normal distribution or Dirichlet distribution. Simulations from the multivariate Normal distribution are based on the compositional mean and variance-covariance matrix. Simulations from the Dirichlet distribution are based on maximum likelihood estimation of alpha
parameters.
bootstrapSoilTexture(ssc, method = c("dirichlet", "normal"), n = 100)
bootstrapSoilTexture(ssc, method = c("dirichlet", "normal"), n = 100)
ssc |
a |
method |
type of simulation: 'dirichlet' or 'normal'. See details. |
n |
number of simulated compositions. See details. |
Simulations from the multivariate normal distribution will more closely track the marginal distributions of sand, silt, and clay–possibly a better fit for "squished" compositions (TODO elaborate). However, these simulations can result in extreme (unlikely) estimates.
Simulations from the Dirichlet distribution will usually be a better fit (fewer extreme estimates) but require a fairly large number of records in ssc
(n >= 30
?) for a reliable fit.
Additional examples will be added to this tutorial.
a list
containing:
samples
- data.frame
of simulated sand, silt, clay values
mean
- compositional mean
var
- compositional variance-covariance matrix
D.alpha
- (fitted) alpha parameters of the Dirichlet distribution, NULL
when method = 'normal'
D.E. Beaudette
Aitchison, J. (1986) The Statistical Analysis of Compositional Data Monographs on Statistics and Applied Probability. Chapman & Hall Ltd., London (UK). 416p.
Aitchison, J, C. Barcel'o-Vidal, J.J. Egozcue, V. Pawlowsky-Glahn (2002) A concise guide to the algebraic geometric structure of the simplex, the sample space for compositional data analysis, Terra Nostra, Schriften der Alfred Wegener-Stiftung, 03/2003
Malone Brendan, Searle Ross (2021) Updating the Australian digital soil texture mapping (Part 1*): re-calibration of field soil texture class centroids and description of a field soil texture conversion algorithm. Soil Research. https://www.publish.csiro.au/SR/SR20283
Malone Brendan, Searle Ross (2021) Updating the Australian digital soil texture mapping (Part 2*): spatial modelling of merged field and lab measurements. Soil Research. https://doi.org/10.1071/SR20284
if( requireNamespace("compositions") & requireNamespace("soiltexture") ) { # sample data, data.frame data('sp4') # filter just Bt horizon data ssc <- sp4[grep('^Bt', sp4$name), c('sand', 'silt', 'clay')] names(ssc) <- toupper(names(ssc)) # simulate 100 samples s <- bootstrapSoilTexture(ssc, n = 100) s <- s$samples # empty soil texture triangle TT <- soiltexture::TT.plot( class.sys= "USDA-NCSS.TT", main= "", tri.sum.tst=FALSE, cex.lab=0.75, cex.axis=0.75, frame.bg.col='white', class.lab.col='black', lwd.axis=1.5, arrows.show=TRUE, new.mar = c(3, 0, 0, 0) ) # add original data points soiltexture::TT.points( tri.data = s, geo = TT, col='firebrick', pch = 3, cex = 0.5, lwd = 1, tri.sum.tst = FALSE ) # add simulated points soiltexture::TT.points( tri.data = ssc, geo = TT, bg='royalblue', pch = 22, cex = 1, lwd = 1, tri.sum.tst = FALSE ) # simple legend legend('top', legend = c('Source', 'Simulated'), pch = c(22, 3), col = c('black', 'firebrick'), pt.bg = c('royalblue', NA), horiz = TRUE, bty = 'n' ) }
if( requireNamespace("compositions") & requireNamespace("soiltexture") ) { # sample data, data.frame data('sp4') # filter just Bt horizon data ssc <- sp4[grep('^Bt', sp4$name), c('sand', 'silt', 'clay')] names(ssc) <- toupper(names(ssc)) # simulate 100 samples s <- bootstrapSoilTexture(ssc, n = 100) s <- s$samples # empty soil texture triangle TT <- soiltexture::TT.plot( class.sys= "USDA-NCSS.TT", main= "", tri.sum.tst=FALSE, cex.lab=0.75, cex.axis=0.75, frame.bg.col='white', class.lab.col='black', lwd.axis=1.5, arrows.show=TRUE, new.mar = c(3, 0, 0, 0) ) # add original data points soiltexture::TT.points( tri.data = s, geo = TT, col='firebrick', pch = 3, cex = 0.5, lwd = 1, tri.sum.tst = FALSE ) # add simulated points soiltexture::TT.points( tri.data = ssc, geo = TT, bg='royalblue', pch = 22, cex = 1, lwd = 1, tri.sum.tst = FALSE ) # simple legend legend('top', legend = c('Source', 'Simulated'), pch = c(22, 3), col = c('black', 'firebrick'), pt.bg = c('royalblue', NA), horiz = TRUE, bty = 'n' ) }
Compute a multinominal Brier score from predicted class probabilities and observed class label. Lower values are associated with a more accurate classifier.
brierScore(x, classLabels, actual = "actual")
brierScore(x, classLabels, actual = "actual")
x |
|
classLabels |
vector of predicted class labels (probabilities), corresponding to column names in |
actual |
name of column containing the observed class, should be character vector not factor |
a single Brier score, representative of data in x
D.E. Beaudette
Brier, Glenn W. 1950. "Verification of Forecasts Expressed in Terms of Probability." Monthly Weather Review 78 (1): 1-3. doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.
# columns 'a', 'b', 'c' contain predicted probabilities # column 'actual' contains observed class label # a good classifier d.good <- data.frame( a = c(0.05, 0.05, 0.10), b = c(0.90, 0.85, 0.75), c = c(0.05, 0.10, 0.15), actual = c('b', 'b', 'b'), stringsAsFactors = FALSE ) # a rather bad classifier d.bad <- data.frame( a = c(0.05, 0.05, 0.10), b = c(0.90, 0.85, 0.75), c = c(0.05, 0.10, 0.15), actual = c('c', 'c', 'c'), stringsAsFactors = FALSE ) # class labels are factors d.factors <- data.frame( a = c(0.05, 0.05, 0.10), b = c(0.90, 0.85, 0.75), c = c(0.05, 0.10, 0.15), actual = c('b', 'b', 'b'), stringsAsFactors = TRUE ) # relatively low value = accurate brierScore(x = d.good, classLabels = c('a', 'b', 'c'), actual = 'actual') # high values = not accuate brierScore(x = d.bad, classLabels = c('a', 'b', 'c'), actual = 'actual') # message related to conversion of factor -> character brierScore(x = d.factors, classLabels = c('a', 'b', 'c'), actual = 'actual')
# columns 'a', 'b', 'c' contain predicted probabilities # column 'actual' contains observed class label # a good classifier d.good <- data.frame( a = c(0.05, 0.05, 0.10), b = c(0.90, 0.85, 0.75), c = c(0.05, 0.10, 0.15), actual = c('b', 'b', 'b'), stringsAsFactors = FALSE ) # a rather bad classifier d.bad <- data.frame( a = c(0.05, 0.05, 0.10), b = c(0.90, 0.85, 0.75), c = c(0.05, 0.10, 0.15), actual = c('c', 'c', 'c'), stringsAsFactors = FALSE ) # class labels are factors d.factors <- data.frame( a = c(0.05, 0.05, 0.10), b = c(0.90, 0.85, 0.75), c = c(0.05, 0.10, 0.15), actual = c('b', 'b', 'b'), stringsAsFactors = TRUE ) # relatively low value = accurate brierScore(x = d.good, classLabels = c('a', 'b', 'c'), actual = 'actual') # high values = not accuate brierScore(x = d.bad, classLabels = c('a', 'b', 'c'), actual = 'actual') # message related to conversion of factor -> character brierScore(x = d.factors, classLabels = c('a', 'b', 'c'), actual = 'actual')
Calculate "Color Development Equivalent" by the method of Buntley & Westin (1965) "A Comparative Study of Developmental Color in a Chestnut-Chernozem-Brunizem Soil Climosequence" DOI: 10.2136/sssaj1965.03615995002900050029x. Originally developed for Mollisols, the Buntley-Westin index has been used as a tool to separate soils based on depth to particular colors.
buntley.westin.index(hue, chroma)
buntley.westin.index(hue, chroma)
hue |
A character vector containing Munsell hues (e.g. "7.5YR") |
chroma |
A numeric vector containing Munsell chromas |
A numeric vector reflecting horizon color development.
Andrew G. Brown
Buntley, G.J. and Westin, F.C. (1965), A Comparative Study of Developmental Color in a Chestnut-Chernozem-Brunizem Soil Climosequence. Soil Science Society of America Journal, 29: 579-582. doi:10.2136/sssaj1965.03615995002900050029x
Combine SoilProfileCollection
objects or lists of SoilProfileCollection
objects. This method provides ...
expansion for the pbindlist
method.
## S4 method for signature 'SoilProfileCollection' c(x, ...) ## S4 method for signature 'SoilProfileCollection' combine(...) ## S4 method for signature 'list' combine(...)
## S4 method for signature 'SoilProfileCollection' c(x, ...) ## S4 method for signature 'SoilProfileCollection' combine(...) ## S4 method for signature 'list' combine(...)
x |
A |
... |
|
A SoilProfileCollection
# example data spc1 <- random_profile(1, SPC = TRUE) spc2 <- random_profile(2, SPC = TRUE) spc3 <- random_profile('A', SPC = TRUE) # combine into a single SPC, ... interface spc <- combine(spc1, spc2, spc3) # combine into a single SPC, list interface spc <- combine(list(spc1, spc2, spc3)) # input are combined into a single SPC spc <- c(spc1, spc2, spc3) # result is a list when a mixture of objects are provided spc <- c(spc1, bar=spc2, baz="foo")
# example data spc1 <- random_profile(1, SPC = TRUE) spc2 <- random_profile(2, SPC = TRUE) spc3 <- random_profile('A', SPC = TRUE) # combine into a single SPC, ... interface spc <- combine(spc1, spc2, spc3) # combine into a single SPC, list interface spc <- combine(list(spc1, spc2, spc3)) # input are combined into a single SPC spc <- c(spc1, spc2, spc3) # result is a list when a mixture of objects are provided spc <- c(spc1, bar=spc2, baz="foo")
Site and laboratory data from soils sampled in the central Sierra Nevada Region of California.
data(ca630)
data(ca630)
List containing:
$site : A data frame containing site information.
national user site id
the MLRA
the county
soil survey area
longitude, WGS84
latitude, WGS84
national soil profile id
local soil profile id
control section top depth (cm)
control section bottom depth (cm)
soil series name
$lab : A data frame containing horizon information.
national soil profile id
national horizon id
horizon sequence number
horizon top (cm)
horizon bottom (cm)
horizon name
USDA soil texture
sum of bases extracted by ammonium acetate (pH 7)
exchangeable acidity [method ?]
cation exchange capacity by sum of cations method (pH 8.2)
cation exchange capacity by ammonium acetate (pH 7)
base saturation by sum of cations method (pH 8.2)
base saturation by ammonium acetate (pH 7)
These data were extracted from the NSSL database. ca630
is a list composed
of site and lab data, each stored as data.frame
objects. These data are modeled by a
1:many (site:lab) relation, with the pedon_id
acting as the primary key in
the site
table and as the foreign key in the lab
table.
These data are out of date. Pending some new data + documentation. Use with caution
https://ncsslabdatamart.sc.egov.usda.gov/
## Not run: library(tactile) library(lattice) library(Hmisc) library(sp) # check the data out: data(ca630) str(ca630) # note that pedon_key is the link between the two tables # make a copy of the horizon data ca <- ca630$lab # promote to a SoilProfileCollection class object depths(ca) <- pedon_key ~ hzn_top + hzn_bot # add site data, based on pedon_key site(ca) <- ca630$site # ID data missing coordinates: '|' is a logical OR (missing.coords.idx <- which(is.na(ca$lat) | is.na(ca$lon))) # remove missing coordinates by safely subsetting if(length(missing.coords.idx) > 0) ca <- ca[-missing.coords.idx, ] # register spatial data initSpatial(ca) <- ~ lon + lat # assign a coordinate reference system prj(ca) <- 'EPSG:4269' # check the result print(ca) # aggregate %BS 7 for all profiles into 1 cm slices a <- slab(ca, fm= ~ bs_7) # plot median & IQR by 1 cm slice xyplot( top ~ p.q50, data = a, lower=a$p.q25, upper=a$p.q75, alpha=0.5, ylim=c(160,-5), scales = list(alternating = 1, y = list(tick.num = 7)), panel = panel.depth_function, prepanel = prepanel.depth_function, ylab='Depth (cm)', xlab='Base Saturation at pH 7', par.settings = tactile.theme(superpose.line = list(col = 'black', lwd = 2)) ) # aggregate %BS at pH 8.2 for all profiles by MLRA, along 1 cm slices # note that mlra is stored in @site a <- slab(ca, mlra ~ bs_8.2) # keep only MLRA 18 and 22 a <- subset(a, subset=mlra %in% c('18', '22')) # plot median & IQR by 1 cm slice, using different colors for each MLRA xyplot( top ~ p.q50, groups = factor(mlra), data = a, lower=a$p.q25, upper=a$p.q75, alpha=0.25, sync.colors = TRUE, ylim=c(160,-5), scales = list(alternating = 1, y = list(tick.num = 7)), panel = panel.depth_function, prepanel = prepanel.depth_function, ylab='Depth (cm)', xlab='Base Saturation at pH 7', par.settings = tactile.theme(superpose.line = list(lwd = 2)), auto.key = list(lines = TRUE, points = FALSE, columns = 2) ) # Extract the 2nd horizon from all profiles as SPDF ca.2 <- ca[, 2] # subset profiles 1 through 10 ca.1.to.10 <- ca[1:10, ] # basic plot method: profile plot par(mar = c(0, 0, 3, 1)) plotSPC(ca.1.to.10, name='hzn_desgn', color = 'CEC7') ## End(Not run)
## Not run: library(tactile) library(lattice) library(Hmisc) library(sp) # check the data out: data(ca630) str(ca630) # note that pedon_key is the link between the two tables # make a copy of the horizon data ca <- ca630$lab # promote to a SoilProfileCollection class object depths(ca) <- pedon_key ~ hzn_top + hzn_bot # add site data, based on pedon_key site(ca) <- ca630$site # ID data missing coordinates: '|' is a logical OR (missing.coords.idx <- which(is.na(ca$lat) | is.na(ca$lon))) # remove missing coordinates by safely subsetting if(length(missing.coords.idx) > 0) ca <- ca[-missing.coords.idx, ] # register spatial data initSpatial(ca) <- ~ lon + lat # assign a coordinate reference system prj(ca) <- 'EPSG:4269' # check the result print(ca) # aggregate %BS 7 for all profiles into 1 cm slices a <- slab(ca, fm= ~ bs_7) # plot median & IQR by 1 cm slice xyplot( top ~ p.q50, data = a, lower=a$p.q25, upper=a$p.q75, alpha=0.5, ylim=c(160,-5), scales = list(alternating = 1, y = list(tick.num = 7)), panel = panel.depth_function, prepanel = prepanel.depth_function, ylab='Depth (cm)', xlab='Base Saturation at pH 7', par.settings = tactile.theme(superpose.line = list(col = 'black', lwd = 2)) ) # aggregate %BS at pH 8.2 for all profiles by MLRA, along 1 cm slices # note that mlra is stored in @site a <- slab(ca, mlra ~ bs_8.2) # keep only MLRA 18 and 22 a <- subset(a, subset=mlra %in% c('18', '22')) # plot median & IQR by 1 cm slice, using different colors for each MLRA xyplot( top ~ p.q50, groups = factor(mlra), data = a, lower=a$p.q25, upper=a$p.q75, alpha=0.25, sync.colors = TRUE, ylim=c(160,-5), scales = list(alternating = 1, y = list(tick.num = 7)), panel = panel.depth_function, prepanel = prepanel.depth_function, ylab='Depth (cm)', xlab='Base Saturation at pH 7', par.settings = tactile.theme(superpose.line = list(lwd = 2)), auto.key = list(lines = TRUE, points = FALSE, columns = 2) ) # Extract the 2nd horizon from all profiles as SPDF ca.2 <- ca[, 2] # subset profiles 1 through 10 ca.1.to.10 <- ca[1:10, ] # basic plot method: profile plot par(mar = c(0, 0, 3, 1)) plotSPC(ca.1.to.10, name='hzn_desgn', color = 'CEC7') ## End(Not run)
This function inspects a SoilProfileCollection
object, looking for four common errors in horizon depths:
bottom depth shallower than top depth
equal top and bottom depth
missing top or bottom depth (e.g. NA
)
gap or overlap between adjacent horizons (only if byhz = FALSE
)
checkHzDepthLogic( x, hzdepths = NULL, idname = NULL, fast = FALSE, byhz = FALSE )
checkHzDepthLogic( x, hzdepths = NULL, idname = NULL, fast = FALSE, byhz = FALSE )
x |
|
hzdepths |
character vector, describing top and bottom depths in a |
idname |
character, describing the column containing profile IDs in a |
fast |
logical, When |
byhz |
logical, apply logic tests to profiles ( |
A data.frame
containing profile IDs, validity boolean (valid
) and test results if fast = FALSE
.
The data.frame
will have as many rows as profiles in x
(length(x)
).
id
: Profile IDs, named according to idname(x)
valid
: boolean, profile passes all of the following tests
depthLogic
: boolean, errors related to depth logic
sameDepth
: boolean, errors related to same top/bottom depths
missingDepth
: boolean, NA in top / bottom depths
overlapOrGap
: boolean, gaps or overlap in adjacent horizons (NA
when byhz = TRUE
)
D.E. Beaudette, A.G. Brown, S.M. Roecker
## sample data data(sp3) depths(sp3) <- id ~ top + bottom # these data should be clean res <- checkHzDepthLogic(sp3) head(res) # less memory if only concerned about net validity res <- checkHzDepthLogic(sp3, fast = TRUE) head(res)
## sample data data(sp3) depths(sp3) <- id ~ top + bottom # these data should be clean res <- checkHzDepthLogic(sp3) head(res) # less memory if only concerned about net validity res <- checkHzDepthLogic(sp3, fast = TRUE) head(res)
SoilProfileCollection
Test for a valid SoilProfileCollection
checkSPC(x)
checkSPC(x)
x |
a |
Test for valid SoilProfileCollection
by checking for slots defined in
the class prototype. Likely only used between major versions of aqp
where
internal structure of SoilProfileCollection
has changed. Use
checkHzDepthLogic
to check for common errors in horizon depths.
TRUE or FALSE. Consider using rebuildSPC()
if FALSE.
D.E. Beaudette
Lookup the n
closest Munsell chips from the munsell
lookup table from various color notations. This function replaces rgb2munsell()
.
col2Munsell(col, space = c("sRGB", "CIELAB"), nClosest = 1)
col2Munsell(col, space = c("sRGB", "CIELAB"), nClosest = 1)
col |
character vector of colors, |
space |
character, one of |
nClosest |
integer, number of closest Munsell colors to return (valid range is 1-20) |
an (NA-padded) data.frame
containing hue
, value
, chroma
, and CIE delta-E 2000 color contrast metric between source and nearest matching color(s).
This function is fully vectorized and will pad output with NA-records when NA are present in color
.
D.E. Beaudette
http://ncss-tech.github.io/AQP/ http://www.brucelindbloom.com/index.html?ColorCalcHelp.html https://www.munsellcolourscienceforpainters.com/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html http://www.cis.rit.edu/mcsl/online/munsell.php
# vector of named R colors col2Munsell(c('red', 'green', 'blue')) # sRGB matrix in the range of 0-255 col2Munsell(cbind(255, 0, 0)) # sRGB matrix in the range of 0-1 col2Munsell(cbind(1, 0, 0)) # 10YR 5/6 in CIELAB col2Munsell( cbind(51.4337, 9.917916, 38.6889), space = 'CIELAB' ) # 2.5YR 6/8 in hex notation col2Munsell("#D18158FF") # 7.5YR 8/1 in sRGB {0, 1} col2Munsell( cbind(0.8240707, 0.7856834, 0.7541048) ) # 7.5YR 8/1 in sRGB {0, 255} col2Munsell( cbind(0.8240707, 0.7856834, 0.7541048) * 255 ) # multple colors in CIELAB col2Munsell( parseMunsell(c('10BG 6/6', '2.5YR 4/6'), returnLAB = TRUE), space = 'CIELAB' ) # data.frame input col2Munsell( data.frame(r = 1, g = 0, b = 0), space = 'sRGB' ) # keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # Munsell notation to sRGB triplets {0, 1} color <- munsell2rgb( the_hue = c('10YR', '2.5YR', '5YR'), the_value = c(3, 5, 2.5), the_chroma = c(5, 6, 2), return_triplets = TRUE ) # result is a data.frame of sRGB {0, 1} color # back-transform sRGB -> closest Munsell color # sigma is the dE00 color contrast metric col2Munsell(color, space = 'sRGB')
# vector of named R colors col2Munsell(c('red', 'green', 'blue')) # sRGB matrix in the range of 0-255 col2Munsell(cbind(255, 0, 0)) # sRGB matrix in the range of 0-1 col2Munsell(cbind(1, 0, 0)) # 10YR 5/6 in CIELAB col2Munsell( cbind(51.4337, 9.917916, 38.6889), space = 'CIELAB' ) # 2.5YR 6/8 in hex notation col2Munsell("#D18158FF") # 7.5YR 8/1 in sRGB {0, 1} col2Munsell( cbind(0.8240707, 0.7856834, 0.7541048) ) # 7.5YR 8/1 in sRGB {0, 255} col2Munsell( cbind(0.8240707, 0.7856834, 0.7541048) * 255 ) # multple colors in CIELAB col2Munsell( parseMunsell(c('10BG 6/6', '2.5YR 4/6'), returnLAB = TRUE), space = 'CIELAB' ) # data.frame input col2Munsell( data.frame(r = 1, g = 0, b = 0), space = 'sRGB' ) # keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # Munsell notation to sRGB triplets {0, 1} color <- munsell2rgb( the_hue = c('10YR', '2.5YR', '5YR'), the_value = c(3, 5, 2.5), the_chroma = c(5, 6, 2), return_triplets = TRUE ) # result is a data.frame of sRGB {0, 1} color # back-transform sRGB -> closest Munsell color # sigma is the dE00 color contrast metric col2Munsell(color, space = 'sRGB')
Combines layers and aggregates data by grouping adjacent horizons which match pattern
in
hzdesgn
or, alternately, share a common value in by
argument. Numeric properties are combined
using the weighted average, and other properties are derived from the dominant condition based on
thickness of layers and values in each group.
collapseHz( x, pattern = NULL, by = NULL, hzdesgn = hzdesgnname(x, required = TRUE), FUN = function(x, pattern, hzdesgn, ...) grepl(pattern, x[[hzdesgn]], ignore.case = FALSE), ..., AGGFUN = NULL, ignore_numerics = NULL, na.rm = FALSE )
collapseHz( x, pattern = NULL, by = NULL, hzdesgn = hzdesgnname(x, required = TRUE), FUN = function(x, pattern, hzdesgn, ...) grepl(pattern, x[[hzdesgn]], ignore.case = FALSE), ..., AGGFUN = NULL, ignore_numerics = NULL, na.rm = FALSE )
x |
A SoilProfileCollection |
pattern |
character. A regular expression pattern to match in |
by |
character. A column name specifying horizons that should be combined. Aggregation
will be applied to adjacent groups of layers within profiles that have the same value in |
hzdesgn |
character. Any character column containing horizon-level identifiers. Default:
|
FUN |
function. A function that returns a logical vector equal in length to the number
of horizons in |
... |
Additional arguments passed to the matching function |
AGGFUN |
list. A named list containing custom aggregation functions. List element names
should match the column name that they transform. The functions defined should take three
arguments: |
ignore_numerics |
character. Vector of column names that contain numeric values which
should not be aggregated using |
na.rm |
logical. If |
If a custom matching function (FUN
) is used, it should accept arbitrary additional arguments
via an ellipsis (...
). It is not necessary to do anything with arguments, but the result should
match the number of horizons found in the input SoilProfileCollection x
.
Custom aggregation functions defined in the AGGFUN
argument should either return a single
vector value for each group*column combination, or should return a data.frame object with named
columns. If the input column name is used as a column name in the result data.frame, then the
values of that column name in the result SoilProfileCollection will be replaced by the output
of the aggregation function. See examples.
A SoilProfileCollection
Andrew G. Brown
hz_dissolve()
data(jacobs2000) # calculate a new SPC with genhz column based on patterns new_labels <- c("A", "E", "Bt", "Bh", "C") patterns <- c("A", "E", "B.*t", "B.*h", "C") jacobs2000_gen <- generalizeHz(jacobs2000, new = new_labels, pattern = patterns) # use existing generalized horizon labels i <- collapseHz(jacobs2000_gen, by = "genhz") profile_id(i) <- paste0(profile_id(i), "_collapse") plot( c(i, jacobs2000), color = "genhz", name = "name", name.style = "center-center", cex.names = 1 ) # custom pattern argument j <- collapseHz(jacobs2000, c( `A` = "^A", `E` = "E", `Bt` = "[ABC]+t", `C` = "^C", `foo` = "bar" )) profile_id(j) <- paste0(profile_id(j), "_collapse") plot(c(j, jacobs2000), color = "clay") # custom aggregation function for matrix_color_munsell k <- collapseHz(jacobs2000, pattern = c( `A` = "^A", `E` = "E", `Bt` = "[ABC]+t", `C` = "^C", `foo` = "bar" ), AGGFUN = list( matrix_color_munsell = function(x, top, bottom) { thk <- bottom - top if (length(x) > 1) { xord <- order(thk, decreasing = TRUE) paste0(paste0(x[xord], " (t=", thk[xord], ")"), collapse = ", ") } else x } ) ) profile_id(k) <- paste0(profile_id(k), "_collapse_custom") unique(k$matrix_color_munsell) # custom aggregation function for matrix_color_munsell (returns data.frame) m <- collapseHz(jacobs2000, pattern = c( `A` = "^A", `E` = "E", `Bt` = "[ABC]+t", `C` = "^C", `foo` = "bar" ), AGGFUN = list( matrix_color_munsell = function(x, top, bottom) { thk <- bottom - top if (length(x) > 1) { xord <- order(thk, decreasing = TRUE) data.frame(matrix_color_munsell = paste0(x, collapse = ";"), n_matrix_color = length(x)) } else { data.frame(matrix_color_munsell = x, n_matrix_color = length(x)) } } ) ) profile_id(m) <- paste0(profile_id(m), "_collapse_custom") m$matrix_color_munsell.n_matrix_color
data(jacobs2000) # calculate a new SPC with genhz column based on patterns new_labels <- c("A", "E", "Bt", "Bh", "C") patterns <- c("A", "E", "B.*t", "B.*h", "C") jacobs2000_gen <- generalizeHz(jacobs2000, new = new_labels, pattern = patterns) # use existing generalized horizon labels i <- collapseHz(jacobs2000_gen, by = "genhz") profile_id(i) <- paste0(profile_id(i), "_collapse") plot( c(i, jacobs2000), color = "genhz", name = "name", name.style = "center-center", cex.names = 1 ) # custom pattern argument j <- collapseHz(jacobs2000, c( `A` = "^A", `E` = "E", `Bt` = "[ABC]+t", `C` = "^C", `foo` = "bar" )) profile_id(j) <- paste0(profile_id(j), "_collapse") plot(c(j, jacobs2000), color = "clay") # custom aggregation function for matrix_color_munsell k <- collapseHz(jacobs2000, pattern = c( `A` = "^A", `E` = "E", `Bt` = "[ABC]+t", `C` = "^C", `foo` = "bar" ), AGGFUN = list( matrix_color_munsell = function(x, top, bottom) { thk <- bottom - top if (length(x) > 1) { xord <- order(thk, decreasing = TRUE) paste0(paste0(x[xord], " (t=", thk[xord], ")"), collapse = ", ") } else x } ) ) profile_id(k) <- paste0(profile_id(k), "_collapse_custom") unique(k$matrix_color_munsell) # custom aggregation function for matrix_color_munsell (returns data.frame) m <- collapseHz(jacobs2000, pattern = c( `A` = "^A", `E` = "E", `Bt` = "[ABC]+t", `C` = "^C", `foo` = "bar" ), AGGFUN = list( matrix_color_munsell = function(x, top, bottom) { thk <- bottom - top if (length(x) > 1) { xord <- order(thk, decreasing = TRUE) data.frame(matrix_color_munsell = paste0(x, collapse = ";"), n_matrix_color = length(x)) } else { data.frame(matrix_color_munsell = x, n_matrix_color = length(x)) } } ) ) profile_id(m) <- paste0(profile_id(m), "_collapse_custom") m$matrix_color_munsell.n_matrix_color
Visualize soil colors in Munsell notation according to within-group frequency.
colorChart( m, g = factor("All"), size = TRUE, annotate = FALSE, chip.cex = 3, chip.cex.min = 0.1, chip.cex.max = 1.5, chip.border.col = "black", annotate.cex = chip.cex * 0.25, annotate.type = c("count", "percentage"), threshold = NULL )
colorChart( m, g = factor("All"), size = TRUE, annotate = FALSE, chip.cex = 3, chip.cex.min = 0.1, chip.cex.max = 1.5, chip.border.col = "black", annotate.cex = chip.cex * 0.25, annotate.type = c("count", "percentage"), threshold = NULL )
m |
character vector of color in Munsell notation ('10YR 4/6') |
g |
factor describing group membership, typically a generalization of horizon designation, default value will generate a fake grouping that covers all of the colors in |
size |
logical, encode group-wise frequency with chip size |
annotate |
logical, annotate color chip frequency |
chip.cex |
scaling factor applied to each color chip |
chip.cex.min |
lower limit for color chip frequency depiction |
chip.cex.max |
lower limit for color chip frequency depiction |
chip.border.col |
color for chip borders (outline) |
annotate.cex |
scaling factor for chip frequency annotation |
annotate.type |
character, within-group |
threshold |
numeric within 0-1, color chips with proportion |
a trellis
object
# required for latticeExtra:useOuterStrips if(!requireNamespace('latticeExtra')) { # two hue pages ric <- expand.grid( hue = c('5YR', '7.5YR'), value = 2:8, chroma = 2:8 ) # combine hue, value, chroma into standard Munsell notation ric <- sprintf("%s %s/%s", ric$hue, ric$value, ric$chroma) # note that chip frequency-based size is disabled # because all chips have equal frequency colorChart(ric, chip.cex = 4, size = TRUE) # annotation of frequency colorChart(ric, chip.cex = 4, annotate = TRUE) # bootstrap to larger size ric.big <- sample(ric, size = 100, replace = TRUE) # frequency can be encoded in size colorChart(ric.big, chip.cex = 3) colorChart(ric.big, chip.cex = 5, annotate = TRUE) # constant size colorChart(ric.big, chip.cex = 3, size = FALSE) colorChart(ric.big, chip.cex = 3, size = FALSE, chip.border.col = 'NA') # simulate colors based dE00 thresholding p <- list( list(m = '10YR 4/4', thresh = 10, hues = c('10YR', '7.5YR')) ) # perform 500 simulations s <- simulateColor(method = 'dE00', n = 500, parameters = p) # result is a list, use the first element colorChart(s[[1]], chip.cex = 4) # increase the possible range of color chip sizes colorChart(s[[1]], chip.cex = 4, chip.cex.min = 0.01, chip.cex.max = 2) # slightly funky support for neutral hues N <- sprintf('N %s/', 2:8) cols <- c(rep(N, times = 5), ric.big) # note special panel used to show neutral hues colorChart(cols, size = FALSE, annotate = TRUE) # filter proportions below given threshold colorChart(cols, size = FALSE, annotate = TRUE, threshold = 0.01, chip.cex = 4, annotate.type = 'percentage') }
# required for latticeExtra:useOuterStrips if(!requireNamespace('latticeExtra')) { # two hue pages ric <- expand.grid( hue = c('5YR', '7.5YR'), value = 2:8, chroma = 2:8 ) # combine hue, value, chroma into standard Munsell notation ric <- sprintf("%s %s/%s", ric$hue, ric$value, ric$chroma) # note that chip frequency-based size is disabled # because all chips have equal frequency colorChart(ric, chip.cex = 4, size = TRUE) # annotation of frequency colorChart(ric, chip.cex = 4, annotate = TRUE) # bootstrap to larger size ric.big <- sample(ric, size = 100, replace = TRUE) # frequency can be encoded in size colorChart(ric.big, chip.cex = 3) colorChart(ric.big, chip.cex = 5, annotate = TRUE) # constant size colorChart(ric.big, chip.cex = 3, size = FALSE) colorChart(ric.big, chip.cex = 3, size = FALSE, chip.border.col = 'NA') # simulate colors based dE00 thresholding p <- list( list(m = '10YR 4/4', thresh = 10, hues = c('10YR', '7.5YR')) ) # perform 500 simulations s <- simulateColor(method = 'dE00', n = 500, parameters = p) # result is a list, use the first element colorChart(s[[1]], chip.cex = 4) # increase the possible range of color chip sizes colorChart(s[[1]], chip.cex = 4, chip.cex.min = 0.01, chip.cex.max = 2) # slightly funky support for neutral hues N <- sprintf('N %s/', 2:8) cols <- c(rep(N, times = 5), ric.big) # note special panel used to show neutral hues colorChart(cols, size = FALSE, annotate = TRUE) # filter proportions below given threshold colorChart(cols, size = FALSE, annotate = TRUE, threshold = 0.01, chip.cex = 4, annotate.type = 'percentage') }
Pair-wise comparisons of Munsell color specifications, based on the NCSS color contrast classes (Soil Survey Technical Note 2) and CIE delta-E 2000 metric.
colorContrast(m1, m2)
colorContrast(m1, m2)
m1 |
vector of Munsell colors ('10YR 3/3') |
m2 |
vector of Munsell colors ('10YR 3/6') |
This function is fully vectorized but expects input to be of the same length. Use expand.grid()
to generate suitable input from 1:many or many:1 type comparisons. See this tutorial for an expanded discussion and more examples. Neutral colors are not mentioned in SSTN2: in this function any comparison to a neutral color (e.g. 'N 3/') are assigned a delta-hue of 1. Since SSTN2 expects hues to be counted clock wise from 5R, it possible to get very large delta-hue values for otherwise adjacent colors: '5R' vs. '2.5R'. This will be addressed in an update to the standards.
The most meaningful representation of color contrast is the CIE2000 (dE00) metric.
data.frame
with the following columns:
m1: Munsell color 1
m2: Munsell color 2
dH: delta-hue, as computed by huePosition
dV: delta-value, absolute value of difference in Munsell value (m1 vs. m2)
dc: delta-chroma, absolute value of difference in Munsell chroma (m1 vs. m2)
dE00: delta-E00, e.g. the CIE delta-E as refined in 2000
cc: soil color contrast class, as specified in Soil Survey Technical Note 2.
delta-E00 is computed by the farver package.
D.E. Beaudette
https://en.wikipedia.org/wiki/Color_difference
colorContrastPlot, huePosition, huePositionCircle
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # two sets of colors to compare m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', '7.5YR 3/4') m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3') # contrast metrics colorContrast(m1, m2) # adjacent chips colorContrast('10YR 3/3', '10YR 3/4') colorContrast('10YR 3/3', '7.5YR 3/3') # highly contrasting colors # http://colour.granjow.net/fabercastell-polychromos.html colorContrastPlot('10B 4/13', '10YR 10/15', labels = c('helioblue-reddish', 'light cadmium yellow') ) ## Note: neutral hues aren't defined in TN2 # approximation / extension of the concept colorContrast(m1 = 'N 3/', m2 = 'N 6/') # colorContrast(m1 = '10YR 3/3', m2 = 'N 3/') m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', 'N 3/') m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3') colorContrast(m1, m2)
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # two sets of colors to compare m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', '7.5YR 3/4') m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3') # contrast metrics colorContrast(m1, m2) # adjacent chips colorContrast('10YR 3/3', '10YR 3/4') colorContrast('10YR 3/3', '7.5YR 3/3') # highly contrasting colors # http://colour.granjow.net/fabercastell-polychromos.html colorContrastPlot('10B 4/13', '10YR 10/15', labels = c('helioblue-reddish', 'light cadmium yellow') ) ## Note: neutral hues aren't defined in TN2 # approximation / extension of the concept colorContrast(m1 = 'N 3/', m2 = 'N 6/') # colorContrast(m1 = '10YR 3/3', m2 = 'N 3/') m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', 'N 3/') m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3') colorContrast(m1, m2)
A simple display of two sets of colors, NCSS color contrast class and CIE delta-E00.
colorContrastPlot( m1, m2, col.cex = 1, col.font = 2, d.cex = 1, cc.font = 3, dE00.font = 1, labels = c("m1", "m2"), label.cex = 1, label.font = 1, printMetrics = TRUE, ... )
colorContrastPlot( m1, m2, col.cex = 1, col.font = 2, d.cex = 1, cc.font = 3, dE00.font = 1, labels = c("m1", "m2"), label.cex = 1, label.font = 1, printMetrics = TRUE, ... )
m1 |
first set of Munsell colors for comparison (e.g. '5YR 3/2') |
m2 |
second set of Munsell colors for comparison |
col.cex |
scaling factor for color labels |
col.font |
font for color labels |
d.cex |
contrast for contrast metric labels |
cc.font |
font for contrast class |
dE00.font |
font for delta-E00 |
labels |
labels for compared colors, vector length 2 |
label.cex |
scaling factor for labels |
label.font |
font for labels |
printMetrics |
logical, print metrics between color swatches |
... |
further arguments to |
This function requires the farver
package for calculation of CIE
delta-E00.
D.E. Beaudette
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # two sets of colors to compare m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', '7.5YR 3/4') m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3') # contrast metrics colorContrast(m1, m2) # graphical display colorContrastPlot(m1, m2)
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # two sets of colors to compare m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', '7.5YR 3/4') m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3') # contrast metrics colorContrast(m1, m2) # graphical display colorContrastPlot(m1, m2)
Estimate central tendency and spread of soil color using marginal quantiles and L1 median of CIELAB coordinates.
colorQuantiles(soilColors, p = c(0.05, 0.5, 0.95))
colorQuantiles(soilColors, p = c(0.05, 0.5, 0.95))
soilColors |
vector of R colors (sRGB colorspace) |
p |
marginal quantiles of interest |
Colors are converted from sRGB to CIELAB (D65 illuminant), marginal quantiles of (L,A,B) coordinates are estimated, and L1 median (L,A,B) is estimates. The closest Munsell chips (via Munsell/CIELAB lookup table provided by munsell
) and R colors are determined by locating chips closest to the marginal quantiles and L1 median.
The results can be conveniently inspected using plotColorQuantiles()
.
A List containing the following elements:
marginal
: data.frame
containing marginal quantiles in CIELAB (D65), closest Munsell chips, and dE00
L1
: L1 median CIELAB (D65) values, closest Munsell chip, and dE00
D.E. Beaudette
## Not run: # example data, see manual page for details data(sp5) # slice top 25 cm # 24-25cm is the last slice s <- dice(sp5, 0:24 ~ .) # check some of the data par(mar=c(0,0,0,0)) plotSPC(sample(s, 25), divide.hz = FALSE, name = '', print.id = FALSE, width = 0.5) # colors previewColors(unique(s$soil_color)) # compute marginal quantiles and L1 median cq <- colorQuantiles(s$soil_color) # simple graphical display of results plotColorQuantiles(cq) ## End(Not run)
## Not run: # example data, see manual page for details data(sp5) # slice top 25 cm # 24-25cm is the last slice s <- dice(sp5, 0:24 ~ .) # check some of the data par(mar=c(0,0,0,0)) plotSPC(sample(s, 25), divide.hz = FALSE, name = '', print.id = FALSE, width = 0.5) # colors previewColors(unique(s$soil_color)) # compute marginal quantiles and L1 median cq <- colorQuantiles(s$soil_color) # simple graphical display of results plotColorQuantiles(cq) ## End(Not run)
Compare site level attributes of a SoilProfileCollection
object, returning a distance matrix conformal with the output from NCSP()
. Values are within the range of 0-1.
compareSites(x, vars, weights = rep(1, times = length(vars)), ...)
compareSites(x, vars, weights = rep(1, times = length(vars)), ...)
x |
|
vars |
character vector listing one or more site level attributes of |
weights |
numeric vector, same length as |
... |
additional arguments to |
This function is typically used in conjunction with the output from NCSP()
.
dissimilarity
/ dist
class object containing pair-wise distances, row/column names derived from profile_id(x)
compositeSPC()
is a convenience function that returns a named list representation of the columns from the @site
and @horizons
slots.
compositeSPC(object)
compositeSPC(object)
object |
A SoilProfileCollection |
A list.
Andrew G. Brown.
Calculate the confusion index of Burrough et al., 1997.
confusionIndex(x)
confusionIndex(x)
x |
vector of probabilities (0,1), should not contain NA |
A single numeric value.
D.E. Beaudette
Burrough, P.A., P.F.M. van Gaans, and R. Hootsmans. 1997. "Continuous Classification in Soil Survey: Spatial Correlation, Confusion and Boundaries." Geoderma 77: 115-35. doi:10.1016/S0016-7061(97)00018-9.
# a very simple example p <- c(0.25, 0.25, 0.4, 0.05, 0.05) confusionIndex(p) # for comparison shannonEntropy(p)
# a very simple example p <- c(0.25, 0.25, 0.4, 0.05, 0.05) confusionIndex(p) # for comparison shannonEntropy(p)
Compare one or more pages from a simulated Munsell book of soil colors to a reference color.
contrastChart( m, hues, ccAbbreviate = 1, style = "hue", gridLines = FALSE, de00.cex = 0.6, cc.cex = 0.6, thresh = NULL, returnData = FALSE )
contrastChart( m, hues, ccAbbreviate = 1, style = "hue", gridLines = FALSE, de00.cex = 0.6, cc.cex = 0.6, thresh = NULL, returnData = FALSE )
m |
Munsell representation of a single color for comparison e.g. '10YR 4/3' |
hues |
vector of one or more Munsell hue pages to display |
ccAbbreviate |
length of abbreviated contrast classes, use 0 to suppress labels |
style |
'hue' or 'CC', see details |
gridLines |
logical, add grid lines to the color contrast chart |
de00.cex |
character scaling applied to dE00 annotation |
cc.cex |
character scaling applied to contrast class annotation |
thresh |
threshold (<) applied to pair-wise comparisons and resulting color chips |
returnData |
logical, return lattice figure + data used to generate the figure |
A simulated Munsell color book page or pages are used to demonstrate color contrast between all chips and the reference color m
(highlighted in red). NCSS color contrast class and CIE delta-E00 values are printed below all other color chips. Munsell color chips for chroma 5 and 7 are omitted, but axis labels are retained as a reminder of this fact.
Setting style='hue'
emphasizes the contrast classes and CIE delta-E00 of chips adjacent to m
. Setting style='CC'
emphasizes adjacent chips according to respective contrast class via lattice panels.
Two-way panels are used when multiple hues are provided and style='CC'
. The default output can be greatly enhanced via:
latticeExtra::useOuterStrips(...,
strip = strip.custom(bg=grey(0.85)),
strip.left = strip.custom(bg=grey(0.85))
)
D.E. Beaudette
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # single hue page contrastChart(m = '10YR 3/3', hues = '10YR') # multiple hue pages contrastChart(m = '10YR 3/3', hues = c('10YR', '2.5Y')) # contrast class, single hue contrastChart(m = '10YR 3/3', hues = '10YR', style='CC') # contrast class, multiple hues # consider latticeExtra::useOuterStrips() contrastChart(m = '10YR 5/6', hues = c('10YR', '2.5Y'), style='CC')
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # single hue page contrastChart(m = '10YR 3/3', hues = '10YR') # multiple hue pages contrastChart(m = '10YR 3/3', hues = c('10YR', '2.5Y')) # contrast class, single hue contrastChart(m = '10YR 3/3', hues = '10YR', style='CC') # contrast class, multiple hues # consider latticeExtra::useOuterStrips() contrastChart(m = '10YR 5/6', hues = c('10YR', '2.5Y'), style='CC')
Determine soil color contrast class according to methods outlined in the
Soil Survey Manual. This function is typically called from
colorContrast()
which is simpler to use and provides more
information.
contrastClass(v1, c1, v2, c2, dH, dV, dC, verbose = FALSE)
contrastClass(v1, c1, v2, c2, dH, dV, dC, verbose = FALSE)
v1 |
Munsell value of first color |
c1 |
Munsell chroma of first color |
v2 |
Munsell value of second color |
c2 |
Munsell chroma of second color |
dH |
delta Hue |
dV |
delta Value |
dC |
delta Chroma |
verbose |
return a list for testing rules/cases |
This function is fully vectorized but expects all inputs have the same length.
A vector of color contrast classes (ordered factor). A list when
verbose
is TRUE.
D.E. Beaudette
Soil Survey Technical Note 2 wayback machine URL
## standard use, result is an ordered factor # 10YR 6/3 vs 5YR 3/4 contrastClass(v1=6, c1=3, v2=3, c2=4, dH=2, dV=3, dC=1) ## verbose output, useful for testing rules/cases # 10YR 6/3 vs 5YR 3/4 contrastClass(v1=6, c1=3, v2=3, c2=4, dH=2, dV=3, dC=1, verbose = TRUE)
## standard use, result is an ordered factor # 10YR 6/3 vs 5YR 3/4 contrastClass(v1=6, c1=3, v2=3, c2=4, dH=2, dV=3, dC=1) ## verbose output, useful for testing rules/cases # 10YR 6/3 vs 5YR 3/4 contrastClass(v1=6, c1=3, v2=3, c2=4, dH=2, dV=3, dC=1, verbose = TRUE)
Apply rock fragment or salt correction to available water content
correctAWC( awc, total_rf = numeric(length(awc)), gravel = NULL, ec = NULL, nullFragsAreZero = TRUE )
correctAWC( awc, total_rf = numeric(length(awc)), gravel = NULL, ec = NULL, nullFragsAreZero = TRUE )
awc |
Numeric vector of available water capacities (e.g. from |
total_rf |
Numeric vector of rock fragment volume percentage, 0 - 100 |
gravel |
Numeric vector of gravel volume percentage, 0 - 100 |
ec |
Numeric vector of electrical conductivity, mmhos/cm |
nullFragsAreZero |
Interpret |
A numeric vector (double) containing estimated available water capacities corrected for rock fragments and salts
# medium organic matter, loam texture base.awc <- 0.18 # estimateAWC(texcl = "l", omcl = 2, na.rm = TRUE) # medium organic matter, loam texture w/ 23% rock fragments by volume corrected.awc <- correctAWC(base.awc, total_rf = 23) corrected.awc # medium organic matter, loam texture w/ 0% frags by volume and 8 mmhos/cm salts salty.awc <- correctAWC(base.awc, total_rf = 0, ec = 8) salty.awc
# medium organic matter, loam texture base.awc <- 0.18 # estimateAWC(texcl = "l", omcl = 2, na.rm = TRUE) # medium organic matter, loam texture w/ 23% rock fragments by volume corrected.awc <- correctAWC(base.awc, total_rf = 23) corrected.awc # medium organic matter, loam texture w/ 0% frags by volume and 8 mmhos/cm salts salty.awc <- correctAWC(base.awc, total_rf = 0, ec = 8) salty.awc
Given a vector or matrix of "eluvial" horizon clay contents (\
crit.clay.argillic()
returns a vector or matrix of minimum clay
contents (thresholds) that must be met for an argillic horizon clay
increase.
crit.clay.argillic(eluvial_clay_content)
crit.clay.argillic(eluvial_clay_content)
eluvial_clay_content |
A numeric vector or matrix containing clay
contents of potential "eluvial" horizons. May contain |
Uses the standard equations for clay contents less than 15 \ and 40 \ the definition of the argillic horizon from 12th Edition Keys to Soil Taxonomy (Soil Survey Staff, 2014).
A vector or matrix (input-dependent) containing minimum "illuvial" horizon clay contents (thresholds) to be met for argillic horizon clay increase.
This function is intended for identifying clay content threshold required for an argillic horizon. These thresholds may not apply depending on the specifics of your soil. E.g. if the upper part of argillic has been plowed (has Ap immediately over upper boundary) the clay increase requirement can be waived (Soil Survey Staff, 2014).
Andrew Gene Brown
Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.
getArgillicBounds
, get.increase.matrix
# crit.clay.argillic uses different equations for clay content # less than 15 %, between 15 and 40 %, and >40 % crit.clay.argillic(eluvial_clay_content=c(5, 20, 45))
# crit.clay.argillic uses different equations for clay content # less than 15 %, between 15 and 40 %, and >40 % crit.clay.argillic(eluvial_clay_content=c(5, 20, 45))
Create a (redundant) horizon-level attribute from a site-level attribute. Specify a SoilProfileCollection and a site-level attribute from that SPC (by name) to receive a vector of length equal to the number of horizons containing the site-level values. This vector is directly usable with the SoilProfileCollection horizon setter.
denormalize
is the inverse operation for the formula interface that "normalizes" a horizon level variable to site level:
site(object) <- ~ horizonvar
denormalize(object, attr)
denormalize(object, attr)
object |
A SoilProfileCollection |
attr |
Site-level attribute name (character string) to denormalize to horizon. |
"Denormalization" is the process of trying to improve the read performance of a database, at the expense of losing some write performance, by adding redundant copies of data or by grouping data. Sometimes it is beneficial to have site-level attributes denormalized for grouping of horizon-level data in analyses. denormalize
achieves this result for SoilProfileCollections.
A vector of values of equal length to the number of rows in the horizon table of the input SPC.
Andrew G. Brown, Dylan Beaudette
data(sp1) # create a SoilProfileCollection from horizon data depths(sp1) <- id ~ top + bottom # create random site-level attribute `sitevar` with a binary (0/1) outcome sp1$sitevar <- round(runif(length(sp1))) # use denormalize() to create a mirror of sitevar in the horizon table # name the attribute something different (e.g. `hz.sitevar`) to # prevent collision with the site attribute # the attributes can have the same name but you will then need # site() or horizons() to access explicitly sp1$hz.sitevar <- denormalize(sp1, 'sitevar') # compare number of profiles to number of sitevar assignments length(sp1) table(sp1$sitevar) # compare number of horizons to number of horizon-level copies of sitevar `hz.'sitevar` nrow(sp1) table(sp1$hz.sitevar)
data(sp1) # create a SoilProfileCollection from horizon data depths(sp1) <- id ~ top + bottom # create random site-level attribute `sitevar` with a binary (0/1) outcome sp1$sitevar <- round(runif(length(sp1))) # use denormalize() to create a mirror of sitevar in the horizon table # name the attribute something different (e.g. `hz.sitevar`) to # prevent collision with the site attribute # the attributes can have the same name but you will then need # site() or horizons() to access explicitly sp1$hz.sitevar <- denormalize(sp1, 'sitevar') # compare number of profiles to number of sitevar assignments length(sp1) table(sp1$sitevar) # compare number of horizons to number of horizon-level copies of sitevar `hz.'sitevar` nrow(sp1) table(sp1$hz.sitevar)
Get units of depth measurement from metadata. Default value is centimeters.
## S4 method for signature 'SoilProfileCollection' depth_units(object) ## S4 replacement method for signature 'SoilProfileCollection' depth_units(object) <- value
## S4 method for signature 'SoilProfileCollection' depth_units(object) ## S4 replacement method for signature 'SoilProfileCollection' depth_units(object) <- value
object |
A SoilProfileCollection |
value |
character, a value representing units. Default |
data(sp5) ## get depth units du <- depth_units(sp5) # set alternate units; e.g. inches depth_units(sp5) <- 'in' # replace original value (cm) depth_units(sp5) <- du
data(sp5) ## get depth units du <- depth_units(sp5) # set alternate units; e.g. inches depth_units(sp5) <- 'in' # replace original value (cm) depth_units(sp5) <- du
The depthOf
family of functions calculate depth of occurrence of a horizon designation pattern, or any other value that can be coerced to character and matched with a regular expression.
If you need all depths of occurrence for a particular pattern, depthOf
is what you are looking for. minDepthOf
and maxDepthOf
are wrappers around depthOf
that return the minimum and maximum depth. They are all set up to handle missing values and missing "contacts" with the target pattern.
depthOf( p, pattern, FUN = NULL, top = TRUE, hzdesgn = hzdesgnname(p, required = TRUE), no.contact.depth = NULL, no.contact.assigned = NA_real_, na.rm = TRUE, simplify = TRUE ) maxDepthOf( p, pattern, top = TRUE, hzdesgn = hzdesgnname(p, required = TRUE), no.contact.depth = NULL, no.contact.assigned = NA, na.rm = TRUE, simplify = TRUE ) minDepthOf( p, pattern, top = TRUE, hzdesgn = hzdesgnname(p, required = TRUE), no.contact.depth = NULL, no.contact.assigned = NA, na.rm = TRUE, simplify = TRUE )
depthOf( p, pattern, FUN = NULL, top = TRUE, hzdesgn = hzdesgnname(p, required = TRUE), no.contact.depth = NULL, no.contact.assigned = NA_real_, na.rm = TRUE, simplify = TRUE ) maxDepthOf( p, pattern, top = TRUE, hzdesgn = hzdesgnname(p, required = TRUE), no.contact.depth = NULL, no.contact.assigned = NA, na.rm = TRUE, simplify = TRUE ) minDepthOf( p, pattern, top = TRUE, hzdesgn = hzdesgnname(p, required = TRUE), no.contact.depth = NULL, no.contact.assigned = NA, na.rm = TRUE, simplify = TRUE )
p |
a SoilProfileCollection |
pattern |
a regular expression to match in the horizon designation column. See: |
FUN |
a function that returns a single value, and takes argument |
top |
should the top (TRUE) or bottom (FALSE) depth be returned for matching horizons? Default: |
hzdesgn |
column name containing horizon designations. Default: |
no.contact.depth |
depth to assume that contact did not occur. |
no.contact.assigned |
depth to assign when a contact did not occur. |
na.rm |
logical. Remove |
simplify |
logical. Return single profile results as vector (default: |
a numeric vector containing specified depth(s) of horizons matching a pattern. If length(p) > 1
then a data.frame containing profile ID, horizon ID, top or bottom depths, horizon designation and pattern.
Andrew G. Brown
# construct a fake profile spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxerepts", hzname = c("A","AB","Bw","BC","R"), hzdept = c(0, 20, 32, 42, 49), hzdepb = c(20, 32, 42, 49, 200), clay = c(19, 22, 22, 21, NA), texcl = c("l","l","l", "l","br"), d_value = c(5, 5, 5, 6, NA), m_value = c(2.5, 3, 3, 4, NA), m_chroma = c(2, 3, 4, 4, NA)) # promote to SoilProfileCollection depths(spc) <- id ~ hzdept + hzdepb hzdesgnname(spc) <- 'hzname' hztexclname(spc) <- 'texcl' # multiple horizons contain B depthOf(spc, "B") # deepest top depth of horizon containing B maxDepthOf(spc, "B") # shallowest top depth minDepthOf(spc, "B") # deepest bottom depth maxDepthOf(spc, "B", top = FALSE) # deepest bottom depth above 35cm maxDepthOf(spc, "B", top = FALSE, no.contact.depth = 35) # assign infinity (Inf) if B horizon does not start within 10cm minDepthOf(spc, "B", no.contact.depth = 10, no.contact.assigned = Inf)
# construct a fake profile spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxerepts", hzname = c("A","AB","Bw","BC","R"), hzdept = c(0, 20, 32, 42, 49), hzdepb = c(20, 32, 42, 49, 200), clay = c(19, 22, 22, 21, NA), texcl = c("l","l","l", "l","br"), d_value = c(5, 5, 5, 6, NA), m_value = c(2.5, 3, 3, 4, NA), m_chroma = c(2, 3, 4, 4, NA)) # promote to SoilProfileCollection depths(spc) <- id ~ hzdept + hzdepb hzdesgnname(spc) <- 'hzname' hztexclname(spc) <- 'texcl' # multiple horizons contain B depthOf(spc, "B") # deepest top depth of horizon containing B maxDepthOf(spc, "B") # shallowest top depth minDepthOf(spc, "B") # deepest bottom depth maxDepthOf(spc, "B", top = FALSE) # deepest bottom depth above 35cm maxDepthOf(spc, "B", top = FALSE, no.contact.depth = 35) # assign infinity (Inf) if B horizon does not start within 10cm minDepthOf(spc, "B", no.contact.depth = 10, no.contact.assigned = Inf)
depths(<data.frame>) <- <formula>
: Initialize SoilProfileCollection
depths(<SoilProfileCollection>)
: Extract profile ID and horizon depths from SoilProfileCollection
## S4 method for signature 'SoilProfileCollection' depths(x, hzID = FALSE, ...) ## S4 replacement method for signature 'SoilProfileCollection' depths(object) <- value ## S4 replacement method for signature 'data.frame' depths(object) <- value
## S4 method for signature 'SoilProfileCollection' depths(x, hzID = FALSE, ...) ## S4 replacement method for signature 'SoilProfileCollection' depths(object) <- value ## S4 replacement method for signature 'data.frame' depths(object) <- value
x |
A SoilProfileCollection |
hzID |
Include horizon ID? Usually this is calculated from the (sorted) row index unless |
... |
not used |
object |
An object to promote to SoilProfileCollection (inherits from data.frame) |
value |
A formula specifying the unique profile ID, top and bottom depth column names |
The input horizon data, and the resulting profile order, is sorted based on unique profile ID and top depth. ID columns are converted to character, depth columns are converted to integer. If NA
values exist in all of the top depths, a prototype with 1 horizon per profile ID is returned, with NA
in all non-essential columns. If the input object
has 0 rows, a prototype with 0 horizons and 0 rows, but same column names as object
, is returned.
a data.frame
containing profile ID, top depth, and bottom depth
horizons()
idname()
hzidname()
horizonDepths()
# load a SoilProfileCollection data(jacobs2000, package = "aqp") depths(jacobs2000) ## init SoilProfileCollection objects from data.frame of horizon data # load demo data data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # plot plot(sp1) # number of profiles length(sp1) # number of horizons nrow(sp1)
# load a SoilProfileCollection data(jacobs2000, package = "aqp") depths(jacobs2000) ## init SoilProfileCollection objects from data.frame of horizon data # load demo data data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # plot plot(sp1) # number of profiles length(sp1) # number of horizons nrow(sp1)
depthWeights()
calculates the contributing fraction for each pair of horizon top and bottom depths, given an upper and lower boundary.
depthWeights(top, bottom, upper, lower)
depthWeights(top, bottom, upper, lower)
top |
A numeric vector of horizon top depths. |
bottom |
A numeric vector of horizon bottom depths. |
upper |
A unit length numeric vector with upper boundary. |
lower |
A unit length numeric vector with lower boundary. |
A named list.
Andrew G. Brown.
Diagnostic horizons describe features of the soil relevant to taxonomic classification. A single profile may have multiple diagnostic features or horizons, each of which may be comprised of multiple horizons.
diagnostic_hz()
(get method): Get diagnostic feature data from a SoilProfileCollection.
diagnostic_hz<-
(set method): Set diagnostic feature data for a SoilProfileCollection. The profile ID column from object
(idname(object)
) must be present in the replacement value
object.
## S4 method for signature 'SoilProfileCollection' diagnostic_hz(object) ## S4 replacement method for signature 'SoilProfileCollection' diagnostic_hz(object) <- value
## S4 method for signature 'SoilProfileCollection' diagnostic_hz(object) ## S4 replacement method for signature 'SoilProfileCollection' diagnostic_hz(object) <- value
object |
A SoilProfileCollection |
value |
An object inheriting from |
# load test data data(sp2) # promote to SPC depths(sp2) <- id ~ top + bottom # assign two profiles a zone related to the mollic epipedon newdata <- data.frame(id = c("hon-1","hon-17"), featkind = "fixed-depth surface sample", featdept = 0, featdepb = 18) # do left join diagnostic_hz(sp2) <- newdata # inspect site table: newvalue TRUE only for horizons # with top depth equal to zero diagnostic_hz(sp2)
# load test data data(sp2) # promote to SPC depths(sp2) <- id ~ top + bottom # assign two profiles a zone related to the mollic epipedon newdata <- data.frame(id = c("hon-1","hon-17"), featkind = "fixed-depth surface sample", featdept = 0, featdepb = 18) # do left join diagnostic_hz(sp2) <- newdata # inspect site table: newvalue TRUE only for horizons # with top depth equal to zero diagnostic_hz(sp2)
SoilProfileCollection
ObjectsCut ("dice") soil horizons into 1-unit thick slices. This function replaces aqp::slice()
, which will be deprecated in aqp 2.0.
## S4 method for signature 'SoilProfileCollection' dice( x, fm = NULL, SPC = TRUE, pctMissing = FALSE, fill = FALSE, strict = TRUE, byhz = TRUE, verbose = FALSE )
## S4 method for signature 'SoilProfileCollection' dice( x, fm = NULL, SPC = TRUE, pctMissing = FALSE, fill = FALSE, strict = TRUE, byhz = TRUE, verbose = FALSE )
x |
a |
fm |
optional |
SPC |
return the diced |
pctMissing |
compute "percent missing data" by slice (when |
fill |
logical, fill with empty placeholder horizons in gaps within profiles, and/or, above/below interval specified in |
strict |
perform horizon depth logic checking / flagging / removal |
byhz |
Evaluate horizon depth logic at the horizon level ( |
verbose |
Print information about object size/memory usage. Default: |
For large and potentially messy collections that may include missing horizon depth logic errors, consider using repairMissingHzDepths()
before dice()
. Consider using accumulateDepths()
before invoking dice()
on collections that may contain old-style O horizon notation (e.g. 5-0cm).
a SoilProfileCollection
object, or data.frame
when SPC = FALSE
D.E. Beaudette and A.G. Brown
repairMissingHzDepths()
, accumulateDepths()
, fillHzGaps()
A simple function to duplicate the contents of a SoilProfileCollection
object. Old profile IDs are saved as a site-level attribute (oldID
) and new IDs are generated using a numeric serial number.
duplicate(x, times = 3, oldID = ".oldID")
duplicate(x, times = 3, oldID = ".oldID")
x |
a |
times |
requested number of copies |
oldID |
site-level attribute used to store the original profile IDs |
a SoilProfileCollection
object
D.E. Beaudette
# sample data data('sp4') # promote to SPC depths(sp4) <- id ~ top + bottom # duplicate each profile 2 times d <- duplicate(sp4, times = 2) # graphical check par(mar = c(0, 0, 3, 1)) plotSPC(d, color = 'Ca', width = 0.25)
# sample data data('sp4') # promote to SPC depths(sp4) <- id ~ top + bottom # duplicate each profile 2 times d <- duplicate(sp4, times = 2) # graphical check par(mar = c(0, 0, 3, 1)) plotSPC(d, color = 'Ca', width = 0.25)
This function attempts to move labels along a 1D coordinate system such that overlap (as specified by threshold) is minimized. An electrostatic simulation applies forces of repulsion between labels that are within thresh
(e.g. overlapping) and forces of attraction to a uniformly spaced sequence to iteratively perturb affected labels until either no overlap is reported, or a maximum number of iterations (maxIter
) has been reached.
electroStatics_1D( x, thresh, q = 1, chargeDecayRate = 0.01, QkA_GrowthRate = 0.05, maxIter = 100, tiny = 1e-04, const = 0.001, trace = FALSE, ... )
electroStatics_1D( x, thresh, q = 1, chargeDecayRate = 0.01, QkA_GrowthRate = 0.05, maxIter = 100, tiny = 1e-04, const = 0.001, trace = FALSE, ... )
x |
numeric vector, pre-sorted sorted, without duplication, describing 1D label (particle) configuration |
thresh |
numeric, overlap threshold, same as in |
q |
numeric, electrical charge (typically between 0.1 and 2) |
chargeDecayRate |
numeric, exponential decay rate constant for |
QkA_GrowthRate |
numeric, growth rate constant for |
maxIter |
integer, maximum number of iterations before giving up |
tiny |
numeric, 0-values replaced by this number to avoid division by 0 and infinite forces |
const |
numeric, empirical constant added to the 1D electrostatic force equation to dampen oscillation: |
trace |
logical, include diagnostic output |
... |
not used, absorbs additional arguments to |
Difficult overlap problems can be addressed by reducing thresh
and increasing q
. Large values of q
can lead to chaotic results.
This function will generate unpredictable output when x
contains duplicate values.
This function requires input to be pre-sorted, although interesting "artistic" simulations will often result from unsorted x
.
When trace = TRUE
a list
, otherwise numeric vector with converged
attribute.
D.E. Beaudette and K.C. Thompson
# vector of object locations, with potential overlap x <- c(1, 2, 3, 3.3, 3.8, 5, 6, 7, 8, 9, 10) # full diagnostic output z <- electroStatics_1D(x, thresh = 0.65, trace = TRUE, q = 1) txt <- sprintf("Converged %s (%s iterations)", z$converged, length(z$cost)) plot( seq_along(z$cost), z$cost, las = 1, xlab = 'Iteration', ylab = 'Overlap Cost', type = 'b', main = txt ) abline(h = 0, lty = 2, col = 2) # final configuration only xnew <- electroStatics_1D(x, thresh = 0.65, q = 1) # check for convergence attr(xnew, 'converged') # compare original vs. modified data.frame(orig = x, new = round(xnew, 2))
# vector of object locations, with potential overlap x <- c(1, 2, 3, 3.3, 3.8, 5, 6, 7, 8, 9, 10) # full diagnostic output z <- electroStatics_1D(x, thresh = 0.65, trace = TRUE, q = 1) txt <- sprintf("Converged %s (%s iterations)", z$converged, length(z$cost)) plot( seq_along(z$cost), z$cost, las = 1, xlab = 'Iteration', ylab = 'Overlap Cost', type = 'b', main = txt ) abline(h = 0, lty = 2, col = 2) # final configuration only xnew <- electroStatics_1D(x, thresh = 0.65, q = 1) # check for convergence attr(xnew, 'converged') # compare original vs. modified data.frame(orig = x, new = round(xnew, 2))
munsell
data setA pre-calculated lookup list (made with farver::compare_colour
) based on pair-wise color contrast (CIE2000
or dE00
) evaluated over all "chips" in the aqp::munsell
data set.
The intention is to identify Munsell chips that may be "functionally equivalent" to some other given whole chip elsewhere in the Munsell color space – as discretized in the aqp::munsell
lookup table.
"Equivalent" chips are based (fairly arbitrarily) on the 0.001 probability level of dE00
(default Type 7 quantile
) within the upper triangle of the 8467x8467 contrast matrix. This corresponds to a dE00
threshold of approximately 2.15.
This is a naive (to the subtleties of human color perception, and overall magnitude of contrast between some of the "chips") but computationally consistent approach. Using the lookup list, as opposed to manual contrast via e.g. farver::compare_colour
may have some benefits for efficiency in certain applications where the exact contrast value is not as important as the concept of having some threshold that is non-zero, but very small.
data(equivalent_munsell)
data(equivalent_munsell)
A named list with 8467 elements, each containing a numeric vector of indices corresponding to the munsell
data set, which has 8467 rows (unique, whole-number chips). Names have the format HUE VALUE/CHROMA
, e.g. "7.5YR 4/4"
Gaurav Sharma, Wencheng Wu, Edul N. Dalal. (2005). The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. COLOR research and application. 30(1):21-30. http://www2.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf
Thomas Lin Pedersen, Berendea Nicolae and Romain Francois (2020). farver: High Performance Colour Space Manipulation. R package version 2.0.3. https://CRAN.R-project.org/package=farver
Dong, C.E., Webb, J.B., Bottrell, M.C., Saginor, I., Lee, B.D. and Stern, L.A. (2020). Strengths, Limitations, and Recommendations for Instrumental Color Measurement in Forensic Soil Characterization. J Forensic Sci, 65: 438-449. https://doi.org/10.1111/1556-4029.14193
data(equivalent_munsell)
data(equivalent_munsell)
Uses a pre-calculated lookup list (equivalent_munsell
) based on pair-wise CIE2000 contrast (dE00
) of LAB color with D65 illuminant for all whole value/chroma "chips" in the aqp::munsell
data set.
The intention is to identify Munsell chips that may be "functionally equivalent" to some other given whole value/chroma chip elsewhere in the Munsell color space – as discretized in the aqp::munsell
data table. This basic assumption needs to be validated against your end goal: probably by visual inspection of some or all of the resulting sets. See colorContrast
and colorContrastPlot
.
"Equivalent" chips table are based (fairly arbitrarily) on the 0.001 probability level of dE00 (default Type 7 quantile
) within the upper triangle of the 8467x8467 contrast matrix. This corresponds to a dE00
contrast threshold of approximately 2.16.
equivalentMunsellChips(hue = NULL, value = NULL, chroma = NULL)
equivalentMunsellChips(hue = NULL, value = NULL, chroma = NULL)
hue |
A character vector containing Munsell hues |
value |
A numeric vector containing Munsell values (integer only) |
chroma |
A numeric vector containing Munsell chromas (integer only) |
A named list; Each list element contains a data.frame with one or more rows of "equivalent" Munsell, RGB and LAB color coordinates from munsell
data set.
Gaurav Sharma, Wencheng Wu, Edul N. Dalal. (2005). The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. COLOR research and application. 30(1):21-30. http://www2.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf
Thomas Lin Pedersen, Berendea Nicolae and Romain François (2020). farver: High Performance Colour Space Manipulation. R package version 2.0.3. https://CRAN.R-project.org/package=farver
Dong, C.E., Webb, J.B., Bottrell, M.C., Saginor, I., Lee, B.D. and Stern, L.A. (2020). Strengths, Limitations, and Recommendations for Instrumental Color Measurement in Forensic Soil Characterization. J Forensic Sci, 65: 438-449. https://doi.org/10.1111/1556-4029.14193
colorContrast
colorContrastPlot
equivalent_munsell
# 7.5YR 4/4 (the one and only) equivalentMunsellChips("7.5YR", 4, 4) #> #> $`7.5YR 4/4` #> hue value chroma r g b L A B #> 8330 7.5YR 4 4 0.4923909 0.352334 0.2313328 41.26403 10.8689 23.5914 # 7.5YR 1/1 (two chips are equivalent; 3 row result) equivalentMunsellChips("7.5YR", 1, 1) #> #> $`7.5YR 1/1` #> hue value chroma r g b L A B #> 1983 10YR 1 1 0.1345633 0.1087014 0.07606787 10.64787 1.621323 6.847629 #> 6189 5YR 1 1 0.1330994 0.1076359 0.09450179 10.63901 2.489012 3.515146 #> 8303 7.5YR 1 1 0.1329483 0.1082380 0.08862581 10.64210 2.065514 4.623922 # 10YR 6/8 (two chips are equivalent; 3 row result) equivalentMunsellChips("10YR", 6, 8) #> #> $`10YR 6/8` #> hue value chroma r g b L A B #> 2039 10YR 6 7 0.7382230 0.5512957 0.2680260 61.76795 10.50886 44.78574 #> 2040 10YR 6 8 0.7519872 0.5472116 0.2157209 61.77496 11.83215 51.15496 #> 2041 10YR 6 9 0.7642826 0.5433189 0.1559069 61.78085 13.09599 57.49773 # compare visually a very red color veryred <- equivalentMunsellChips("10R", 6, 28)[[1]] par(mar=c(0,0,1,1)) pie(rep(1, nrow(veryred)), col = with(veryred, munsell2rgb(hue, value, chroma)), label = with(veryred, sprintf("%s %s/%s", hue, value, chroma))) table(veryred$hue) # 2 hues #> #> 10R 7.5R #> 8 17 table(veryred$value) # 2 values #> #> 5 6 #> 11 14 table(veryred$chroma) # 10 chromas #> #> 21 22 23 24 25 26 27 28 29 30 #> 1 2 2 3 3 4 3 3 2 2
# 7.5YR 4/4 (the one and only) equivalentMunsellChips("7.5YR", 4, 4) #> #> $`7.5YR 4/4` #> hue value chroma r g b L A B #> 8330 7.5YR 4 4 0.4923909 0.352334 0.2313328 41.26403 10.8689 23.5914 # 7.5YR 1/1 (two chips are equivalent; 3 row result) equivalentMunsellChips("7.5YR", 1, 1) #> #> $`7.5YR 1/1` #> hue value chroma r g b L A B #> 1983 10YR 1 1 0.1345633 0.1087014 0.07606787 10.64787 1.621323 6.847629 #> 6189 5YR 1 1 0.1330994 0.1076359 0.09450179 10.63901 2.489012 3.515146 #> 8303 7.5YR 1 1 0.1329483 0.1082380 0.08862581 10.64210 2.065514 4.623922 # 10YR 6/8 (two chips are equivalent; 3 row result) equivalentMunsellChips("10YR", 6, 8) #> #> $`10YR 6/8` #> hue value chroma r g b L A B #> 2039 10YR 6 7 0.7382230 0.5512957 0.2680260 61.76795 10.50886 44.78574 #> 2040 10YR 6 8 0.7519872 0.5472116 0.2157209 61.77496 11.83215 51.15496 #> 2041 10YR 6 9 0.7642826 0.5433189 0.1559069 61.78085 13.09599 57.49773 # compare visually a very red color veryred <- equivalentMunsellChips("10R", 6, 28)[[1]] par(mar=c(0,0,1,1)) pie(rep(1, nrow(veryred)), col = with(veryred, munsell2rgb(hue, value, chroma)), label = with(veryred, sprintf("%s %s/%s", hue, value, chroma))) table(veryred$hue) # 2 hues #> #> 10R 7.5R #> 8 17 table(veryred$value) # 2 values #> #> 5 6 #> 11 14 table(veryred$chroma) # 10 chromas #> #> 21 22 23 24 25 26 27 28 29 30 #> 1 2 2 3 3 4 3 3 2 2
Estimate available water capacity for fine-earth fraction
estimateAWC(texcl, omcl, precision = 2, FUN = mean, ...)
estimateAWC(texcl, omcl, precision = 2, FUN = mean, ...)
texcl |
character, USDA textural class fine earth fraction |
omcl |
integer, Organic matter class. 1: less than 1.5 percent, 2: less than 5, 3: greate than 5 |
precision |
integer, Number of decimal places in result default: 2 |
FUN |
Function for interpolating between table values default: |
... |
Additional arguments to |
A numeric vector double containing estimated available water capacities for fine-earth fraction.
# organic matter, loam texture, low medium and high OM base.awc <- estimateAWC(c("l","l","l"), c(1, 2, 3), na.rm = TRUE) base.awc
# organic matter, loam texture, low medium and high OM base.awc <- estimateAWC(c("l","l","l"), c(1, 2, 3), na.rm = TRUE) base.awc
Estimates the upper and lower boundary of the particle size control section for Mineral or Organic soilsby applying a programmatic version of the particle size control section key from the Keys to Soil Taxonomy (13th edition). See details for assumptions and required data elements.
estimatePSCS( p, hzdesgn = hzdesgnname(p, required = TRUE), clay.attr = hzmetaname(p, "clay", required = TRUE), texcl.attr = hztexclname(p, required = TRUE), lieutex = hzmetaname(p, "lieutex"), tax_order_field = "tax_order", bottom.pattern = "Cr|R|Cd|m", simplify = TRUE, ... )
estimatePSCS( p, hzdesgn = hzdesgnname(p, required = TRUE), clay.attr = hzmetaname(p, "clay", required = TRUE), texcl.attr = hztexclname(p, required = TRUE), lieutex = hzmetaname(p, "lieutex"), tax_order_field = "tax_order", bottom.pattern = "Cr|R|Cd|m", simplify = TRUE, ... )
p |
A SoilProfileCollection |
hzdesgn |
Name of the horizon attribute containing the horizon
designation. Default |
clay.attr |
Name of the horizon attribute containing clay contents.
Default |
texcl.attr |
Name of the horizon attribute containing textural class
(used for finding sandy textures). Default |
lieutex |
Optional data element used in addition to the horizon
designation to identify kinds of organic soil material for soils with organic
surfaces. Default: |
tax_order_field |
Name of the site attribute containing taxonomic order; for handling PSCS rules for Andisols in lieu of lab data. May be NA or column missing altogether, in which case Andisol PSC possibility is ignored. |
bottom.pattern |
Regular expression pattern to match a root-restrictive
contact. Default matches Cr, R, Cd or m. This argument is passed to both
|
simplify |
Return a length 2 vector with upper and lower boundary when p has length 1? Default TRUE. |
... |
additional arguments are passed to getArgillicBounds() |
Requires information to identify argillic horizons (clay contents, horizon
designations) with getArgillicBounds()
as well as the presence of
plow layers and surface organic soil material. Any
getArgillicBounds()
arguments may be passed to estimatePSCS
.
Also, requires information on taxonomic order to handle Andisols.
In aqp 2.1, particle size control sections of organic soils Histosols and
Histels are supported. This requires setting the "lieutex"
horizon metadata
column using hzmetaname<-()
Horizon designations containing "f"
or "W"
are recognized as permafrost and water layers, respectively, for application
of the organic soils key to control sections. In lieu textures "SPM"
and
"PEAT"
are used to identify low density organic materials used for surface
tier thickness. To avoid using the 160 cm surface tier, set the "lieutex"
column to any column that does not contain "SPM"
or "PEAT"
values.
WARNING: Soils in arenic or grossarenic subgroups, with fragipans, or with strongly contrasting PSCs may not be classified correctly. The author would welcome a dataset to develop this functionality for.
A numeric vector (when simplify=TRUE
) containing the top and bottom
depth of the particle
size control section. First value is top, second value is bottom.
If p
contains more than one profile, the result is a data.frame with
profile ID plus PSCS top and bottom depths.
Andrew Gene Brown
Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.
getArgillicBounds()
, getSurfaceHorizonDepth()
data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # set required metadata hzdesgnname(sp1) <- 'name' hztexclname(sp1) <- 'texture' hzmetaname(sp1, 'clay') <- 'prop' x <- estimatePSCS(sp1) x # change horizon texture and set inlieu texture column to turn # first profile into an organic soil sp1$name[1:6] <- c("Oi1", "Oi2", "Oi3", "Oaf", "Cf1", "Cf2") sp1$texture <- as.character(sp1$texture) sp1$texture[1:6] <- c("PEAT", "PEAT", "PEAT", "MUCK", "GRVLS", "GRVLS") sp1$bottom[6] <- 200 hzmetaname(sp1, 'lieutex') <- 'texture' y <- estimatePSCS(sp1[1, ], simplify = FALSE) # 74cm lower boundary is 25cm past the upper boundary of permafrost (49cm) # but minimum depth is 100cm unless there is a root-limiting layer y
data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # set required metadata hzdesgnname(sp1) <- 'name' hztexclname(sp1) <- 'texture' hzmetaname(sp1, 'clay') <- 'prop' x <- estimatePSCS(sp1) x # change horizon texture and set inlieu texture column to turn # first profile into an organic soil sp1$name[1:6] <- c("Oi1", "Oi2", "Oi3", "Oaf", "Cf1", "Cf2") sp1$texture <- as.character(sp1$texture) sp1$texture[1:6] <- c("PEAT", "PEAT", "PEAT", "MUCK", "GRVLS", "GRVLS") sp1$bottom[6] <- 200 hzmetaname(sp1, 'lieutex') <- 'texture' y <- estimatePSCS(sp1[1, ], simplify = FALSE) # 74cm lower boundary is 25cm past the upper boundary of permafrost (49cm) # but minimum depth is 100cm unless there is a root-limiting layer y
Soil color is typically described at dry and moist conditions. This function attempts to estimate soil color at dry or moist condition when one is missing. Estimation proceeds as:
convert Munsell notation to CIELAB color coordinates via munsell2rgb()
apply scaling, rotation, and translation parameters in CIELAB color space
locate closest Munsell chip to CIELAB coordinates via col2munsell()
Estimation of dry from moist soil color state is not guaranteed to be symmetric with estimation of moist from dry.
estimateSoilColor(hue, value, chroma, sourceMoistureState = c("dry", "moist"))
estimateSoilColor(hue, value, chroma, sourceMoistureState = c("dry", "moist"))
hue |
vector of Munsell hue ('10YR', '2.5Y', etc.) |
value |
vector of Munsell value (2,2.5 2.5, 3, 5, 6, etc.) |
chroma |
vector of Munsell chroma (2, 3, 4, etc.) |
sourceMoistureState |
character, source colors are either 'dry' or 'moist' |
Scaling, rotation, and translation parameters for shifting between dry <–> moist CIELAB coordinates was determined using vegan::procrustes()
, from those official series descriptions (OSD) where moist and dry soil colors were available.
Estimates for colors having a (dry or moist) Munsell value of 10 are not likely correct.
This is still a work in progress.
data.frame
of estimated colors in Munsell notation. The sigma
column contains CIE2000 color contrast metric values describing the perceptual distance between estimated color in CIELAB coordinates and closest Munsell chip.
D.E. Beaudette
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) estimateSoilColor(hue = '10YR', value = 3, chroma = 3, sourceMoistureState = 'moist') # note that estimation is not symmetric estimateSoilColor(hue = '10YR', value = 5, chroma = 3, sourceMoistureState = 'dry')
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) estimateSoilColor(hue = '10YR', value = 3, chroma = 3, sourceMoistureState = 'moist') # note that estimation is not symmetric estimateSoilColor(hue = '10YR', value = 5, chroma = 3, sourceMoistureState = 'dry')
Estimate the soil depth of a single profile within a SoilProfileCollection
object. This function would typically be called by profileApply()
.
estimateSoilDepth( f, name = hzdesgnname(f), p = "Cr|R|Cd", selection = min, no.contact.depth = NULL, no.contact.assigned = NULL )
estimateSoilDepth( f, name = hzdesgnname(f), p = "Cr|R|Cd", selection = min, no.contact.depth = NULL, no.contact.assigned = NULL )
f |
SoilProfileCollection object of length 1, e.g. a single profile |
name |
name of the column that contains horizon designations |
p |
REGEX pattern for determining "contact", or depth to some morphologic feature (e.g. |
selection |
an R function applied in the presence of multiple matching horizons: |
no.contact.depth |
in the absence of contact matching |
no.contact.assigned |
value assigned when no contact is encountered at or below |
The choice of a selection
function usually follows:
min
: the top of the first matching horizon, max
: the top bot the last matching horizon,
or possibly mean
: somewhere in-between.
single value representing the depth to contact
or no.contact.assigned
D.E. Beaudette and J.M. Skovlin
getSoilDepthClass
, profileApply
## consider a situation where there were multiple candidate ## "contacts": 2 Cd horizons over an R # init hypothetical profile d <- data.frame( id = '1', top = c(0, 10, 20, 30, 40, 50, 60), bottom = c(10, 20, 30, 40, 50, 60, 80), name = c('A', 'Bt1', 'Bt2', 'BC', 'Cd1', 'Cd2', 'R'), stringsAsFactors = FALSE ) # upgrade to SPC depths(d) <- id ~ top + bottom # init horizon designation hzdesgnname(d) <- 'name' # visual check par(mar = c(0, 0, 0, 2)) plotSPC(d, hz.depths = TRUE, name.style = 'center-center', cex.names = 1, width = 0.1) # top of the first Cd estimateSoilDepth(d, name = 'name') # top of the first Cd estimateSoilDepth(d, name = 'name', selection = min) # top of the R estimateSoilDepth(d, name = 'name', selection = max) # top of the second Cd estimateSoilDepth(d, name = 'name', selection = max, p = 'Cd') ## another example data(sp1) depths(sp1) <- id ~ top + bottom # init horizon designation hzdesgnname(d) <- 'name' # apply to each profile in a collection, and save as site-level attribute sp1$depth <- profileApply(sp1, estimateSoilDepth, name='name') # this function can be used to "find" depth to any feature # that can be defined via REGEX pattern matching on the horizon name # for example, locate the depth to the top "Bt" horizon # returning NA when there is no match sp1$top_Bt <- profileApply( sp1, estimateSoilDepth, name='name', p='Bt', no.contact.depth=0, no.contact.assigned=NA ) # reduced margins par(mar=c(1,1,1,2)) # adjust default y-offset and depth scaling for following examples plotSPC(sp1, y.offset=10, scaling.factor=0.5) # get plotting parameters for profile widths and depth scaling factors lsp <- get("last_spc_plot", envir = aqp.env) # positions on x-axis, same for both depth and top "Bt" horizon x.positions <- (1:length(sp1)) - lsp$width # annotate contact with unicode right-arrow # y-position is adjusted based on plot y-offset and scaling factor y.positions <- lsp$y.offset + (sp1$depth * lsp$scaling.factor) text(x.positions, y.positions, '\u2192', col='red', adj=1, cex=1.25, lwd=2) # annotate top "Bt" depth with unicode right-arrow # y-position is adjusted based on plot y-offset and scaling factor y.positions <- lsp$y.offset + (sp1$top_Bt * lsp$scaling.factor) text(x.positions, y.positions, '\u2192', col='blue', adj=1, cex=1.25, lwd=2) ## Not run: # sample data data(gopheridge, package='soilDB') # run on a single profile estimateSoilDepth(gopheridge[1, ], name = 'hzname') # apply to an entire collection profileApply(gopheridge, estimateSoilDepth, name = 'hzname') ## End(Not run)
## consider a situation where there were multiple candidate ## "contacts": 2 Cd horizons over an R # init hypothetical profile d <- data.frame( id = '1', top = c(0, 10, 20, 30, 40, 50, 60), bottom = c(10, 20, 30, 40, 50, 60, 80), name = c('A', 'Bt1', 'Bt2', 'BC', 'Cd1', 'Cd2', 'R'), stringsAsFactors = FALSE ) # upgrade to SPC depths(d) <- id ~ top + bottom # init horizon designation hzdesgnname(d) <- 'name' # visual check par(mar = c(0, 0, 0, 2)) plotSPC(d, hz.depths = TRUE, name.style = 'center-center', cex.names = 1, width = 0.1) # top of the first Cd estimateSoilDepth(d, name = 'name') # top of the first Cd estimateSoilDepth(d, name = 'name', selection = min) # top of the R estimateSoilDepth(d, name = 'name', selection = max) # top of the second Cd estimateSoilDepth(d, name = 'name', selection = max, p = 'Cd') ## another example data(sp1) depths(sp1) <- id ~ top + bottom # init horizon designation hzdesgnname(d) <- 'name' # apply to each profile in a collection, and save as site-level attribute sp1$depth <- profileApply(sp1, estimateSoilDepth, name='name') # this function can be used to "find" depth to any feature # that can be defined via REGEX pattern matching on the horizon name # for example, locate the depth to the top "Bt" horizon # returning NA when there is no match sp1$top_Bt <- profileApply( sp1, estimateSoilDepth, name='name', p='Bt', no.contact.depth=0, no.contact.assigned=NA ) # reduced margins par(mar=c(1,1,1,2)) # adjust default y-offset and depth scaling for following examples plotSPC(sp1, y.offset=10, scaling.factor=0.5) # get plotting parameters for profile widths and depth scaling factors lsp <- get("last_spc_plot", envir = aqp.env) # positions on x-axis, same for both depth and top "Bt" horizon x.positions <- (1:length(sp1)) - lsp$width # annotate contact with unicode right-arrow # y-position is adjusted based on plot y-offset and scaling factor y.positions <- lsp$y.offset + (sp1$depth * lsp$scaling.factor) text(x.positions, y.positions, '\u2192', col='red', adj=1, cex=1.25, lwd=2) # annotate top "Bt" depth with unicode right-arrow # y-position is adjusted based on plot y-offset and scaling factor y.positions <- lsp$y.offset + (sp1$top_Bt * lsp$scaling.factor) text(x.positions, y.positions, '\u2192', col='blue', adj=1, cex=1.25, lwd=2) ## Not run: # sample data data(gopheridge, package='soilDB') # run on a single profile estimateSoilDepth(gopheridge[1, ], name = 'hzname') # apply to an entire collection profileApply(gopheridge, estimateSoilDepth, name = 'hzname') ## End(Not run)
Data-driven evaluation of generalized horizon labels using nMDS and silhouette width.
evalGenHZ( obj, genhz = GHL(obj, required = TRUE), vars, non.matching.code = "not-used", stand = TRUE, trace = FALSE, metric = "euclidean" )
evalGenHZ( obj, genhz = GHL(obj, required = TRUE), vars, non.matching.code = "not-used", stand = TRUE, trace = FALSE, metric = "euclidean" )
obj |
a |
genhz |
name of horizon-level attribute containing generalized horizon labels |
vars |
character vector of horizon-level attributes to include in the evaluation |
non.matching.code |
code used to represent horizons not assigned a generalized horizon label |
stand |
standardize variables before computing distance matrix, passed to |
trace |
verbose output from passed to |
metric |
distance metric, passed to |
Non-metric multidimensional scaling is performed via MASS::isoMDS()
.
The input distance matrix is generated by cluster::daisy()
using
(complete cases of) horizon-level attributes from obj
as named in
vars
.
Silhouette widths are computed via cluster::silhouette()
. The input
distance matrix is generated by cluster::daisy()
using (complete cases
of) horizon-level attributes from obj
as named in vars
. Note
that observations with genhz labels specified in non.matching.code
are removed filtered before calculation of the distance matrix.
a list is returned containing:
horizons: c('mds.1', mds.2', 'sil.width', 'neighbor')
stats: mean and standard deviation vars
, computed by generalized horizon label
dist: the distance matrix as passed to MASS::isoMDS()
D.E. Beaudette
Evaluate missing data within a SoilProfileCollection
object
Data completeness is evaluated by profile or by horizon. Profile-level evaluation is based on the thickness of horizons (method = absolute
) with complete horizon-level attributes (vars
), optionally divided by the total thickness (method = relative
). The REGEX pattern (p
) is used to filter non-soil horizons from the calculation.
evalMissingData( x, vars, name = hzdesgnname(x), p = "Cr|R|Cd", method = c("relative", "absolute", "horizon") )
evalMissingData( x, vars, name = hzdesgnname(x), p = "Cr|R|Cd", method = c("relative", "absolute", "horizon") )
x |
|
vars |
character vector, naming horizon-level attributes in |
name |
character, the name of a horizon-level attribute where horizon designations are stored, defaults to |
p |
character, REGEX pattern used to match non-soil horizons |
method |
character, one of: 'relative' (proportion of total) depth, 'absolute' depth, or 'horizon' (fraction not-missing by horizon) |
A vector values ranging from 0 to 1 (method = 'relative'
) or 0 to maximum depth in specified depth units (method = 'absolute'
) representing the quantity of non-missing data (as specified in vars
) for each profile. When method = 'horizon'
a non-missing data fraction is returned for each horizon.
D.E. Beaudette
# example data data("jacobs2000") # fully populated plotSPC(jacobs2000, name.style = 'center-center', cex.names = 0.8, color = 'time_saturated') # missing some data plotSPC(jacobs2000, name.style = 'center-center', cex.names = 0.8, color = 'concentration_color') # very nearly complete plotSPC(jacobs2000, name.style = 'center-center', cex.names = 0.8, color = 'matrix_color') # variables to consider v <- c('time_saturated', 'concentration_color', 'matrix_color') # compute data completeness by profile # ignore 2C horizons jacobs2000$data.complete <- evalMissingData( jacobs2000, vars = v, method = 'relative', p = '2C' ) jacobs2000$data.complete.abs <- evalMissingData( jacobs2000, vars = v, method = 'absolute', p = '2C' ) # compute data completeness by horizon # ignore 2C horizons jacobs2000$hz.data.complete <- evalMissingData( jacobs2000, vars = v, method = 'horizon', p = '2C' ) # "fraction complete" by horizon plotSPC( jacobs2000, name.style = 'center-center', cex.names = 0.8, color = 'hz.data.complete' ) # rank on profile completeness new.order <- order(jacobs2000$data.complete) # plot along data completeness ranking plotSPC( jacobs2000, name.style = 'center-center', cex.names = 0.8, color = 'concentration_color', plot.order = new.order ) # add relative completeness axis # note re-ordering of axis labels axis( side = 1, at = 1:length(jacobs2000), labels = round(jacobs2000$data.complete[new.order], 2), line = 0, cex.axis = 0.75 ) # add absolute completeness (cm) axis( side = 1, at = 1:length(jacobs2000), labels = jacobs2000$data.complete.abs[new.order], line = 2.5, cex.axis=0.75 )
# example data data("jacobs2000") # fully populated plotSPC(jacobs2000, name.style = 'center-center', cex.names = 0.8, color = 'time_saturated') # missing some data plotSPC(jacobs2000, name.style = 'center-center', cex.names = 0.8, color = 'concentration_color') # very nearly complete plotSPC(jacobs2000, name.style = 'center-center', cex.names = 0.8, color = 'matrix_color') # variables to consider v <- c('time_saturated', 'concentration_color', 'matrix_color') # compute data completeness by profile # ignore 2C horizons jacobs2000$data.complete <- evalMissingData( jacobs2000, vars = v, method = 'relative', p = '2C' ) jacobs2000$data.complete.abs <- evalMissingData( jacobs2000, vars = v, method = 'absolute', p = '2C' ) # compute data completeness by horizon # ignore 2C horizons jacobs2000$hz.data.complete <- evalMissingData( jacobs2000, vars = v, method = 'horizon', p = '2C' ) # "fraction complete" by horizon plotSPC( jacobs2000, name.style = 'center-center', cex.names = 0.8, color = 'hz.data.complete' ) # rank on profile completeness new.order <- order(jacobs2000$data.complete) # plot along data completeness ranking plotSPC( jacobs2000, name.style = 'center-center', cex.names = 0.8, color = 'concentration_color', plot.order = new.order ) # add relative completeness axis # note re-ordering of axis labels axis( side = 1, at = 1:length(jacobs2000), labels = round(jacobs2000$data.complete[new.order], 2), line = 0, cex.axis = 0.75 ) # add absolute completeness (cm) axis( side = 1, at = 1:length(jacobs2000), labels = jacobs2000$data.complete.abs[new.order], line = 2.5, cex.axis=0.75 )
plotSPC
Create a visual explanation for the many arguments to plotSPC
. Call this function instead of plotSPC
, all objects after x
are passed on to plotSPC
. Nearly all of the figures in the Introduction to SoilProfileCollection Objects tutorial are created with this function.
explainPlotSPC(x, ...)
explainPlotSPC(x, ...)
x |
a |
... |
arguments passed to |
a list of internally-used ordering vectors and graphical offsets / scaling factors
D.E. Beaudette
# sample data data(sp4) depths(sp4) <- id ~ top + bottom # proposed vector of relative positions, overlap likely pos <- c(1, 1.1, 3, 4, 5, 5.2, 7, 8, 9, 10) # try it explainPlotSPC(sp4, name = 'name', relative.pos=pos) # attempt to fix using an integer sequence, short-circut will prevent adjustments explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(1:10)) # attempt to adjust using defaults explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos)) # attempt to adjust and tinker with defaults explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, adj = 0.2)) # enforce larger space between explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.7)) # more complex adjustments required pos <- c(1, 2, 3, 3.3, 5, 5.1, 5.5, 8, 9, 10) # tinker explainPlotSPC(sp4, name = 'name', relative.pos = pos) explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos)) explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.7)) explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.7, adj = 0.2)) # SANN: solution requires many iterations, and will not always converge explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.85, adj = 0.2) ) # electrostatics: solution requires larger charge (q) explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.85, method = 'E', q = 2) )
# sample data data(sp4) depths(sp4) <- id ~ top + bottom # proposed vector of relative positions, overlap likely pos <- c(1, 1.1, 3, 4, 5, 5.2, 7, 8, 9, 10) # try it explainPlotSPC(sp4, name = 'name', relative.pos=pos) # attempt to fix using an integer sequence, short-circut will prevent adjustments explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(1:10)) # attempt to adjust using defaults explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos)) # attempt to adjust and tinker with defaults explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, adj = 0.2)) # enforce larger space between explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.7)) # more complex adjustments required pos <- c(1, 2, 3, 3.3, 5, 5.1, 5.5, 8, 9, 10) # tinker explainPlotSPC(sp4, name = 'name', relative.pos = pos) explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos)) explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.7)) explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.7, adj = 0.2)) # SANN: solution requires many iterations, and will not always converge explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.85, adj = 0.2) ) # electrostatics: solution requires larger charge (q) explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.85, method = 'E', q = 2) )
This function attempts to find "gaps" in the horizon records of a SoilProfileCollection
object and fill with placeholder horizons (profile ID, horizon ID, to/bottom depths, all else NA
). Missing horizon records between the top of each profile and to_top
, or the bottom of each profile and to_bottom
are treated as gaps when those arguments are not NULL
. You can use this function to prepare a potentially messy SoilProfileCollection
for subsequent analyses that are sensitive to horizon sequence inconsistencies or require a conformal "rectangle" of data spanning known depths.
Gaps are defined as:
within each profile, for horizons i
to n_hz
:
bottom_i != top_i+1 (but only to i = 1:(n_hz - 1)
fillHzGaps(x, flag = TRUE, to_top = 0, to_bottom = max(x))
fillHzGaps(x, flag = TRUE, to_top = 0, to_bottom = max(x))
x |
|
flag |
logical, flag empty horizons that have been added. default: |
to_top |
numeric, fill from shallowest top depth in each profile to specified depth? default: |
to_bottom |
numeric, fill from deepest bottom depth in each profile to specified depth? default: |
a possibly modified SoilProfileCollection
object
A.G. Brown and D.E. Beaudette
data(sp4) depths(sp4) <- id ~ top + bottom # introduce depth logic errors idx <- c(2, 6:7, 8, 12) sp4$top[idx] <- NA # check horizons(sp4)[idx, ] # create gaps by removing logic errors x <- HzDepthLogicSubset(sp4, byhz = TRUE) # check on removed horizons (hzID values) metadata(x)$removed.horizons # inspect par(mar = c(0, 0, 0, 2)) plotSPC(x, width = 0.3, default.color = 'royalblue', name = 'hzID', name.style = 'center-center', cex.names = 0.8, cex.id = 0.66) # fill gaps left by HzDepthLogicSubset() z <- fillHzGaps(x, flag = TRUE) # graphical check plotSPC(z, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE, name.style = 'center-center', cex.names = 0.8, cex.id = 0.66) # fill top to 0 cm z2 <- fillHzGaps(x, flag = TRUE, to_top = 0) plotSPC(z2, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE) # fill bottom to max(SPC) z3 <- fillHzGaps(x, flag = TRUE, to_top = 0, to_bottom = max(x)) plotSPC(z3, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE) ## another example data(sp4) depths(sp4) <- id ~ top + bottom # remove 1st horizons from profiles 1:4 idx <- sp4[,, .FIRST, .HZID] replaceHorizons(sp4) <- horizons(sp4)[-idx[1:4], ] # prepare for dice() z <- fillHzGaps(sp4, to_top = 0, to_bottom = 50, flag = TRUE) # empty-horizon padding is in place for formula interface to dice() d <- dice(z, fm = 0:50 ~ .) plotSPC(d, color = 'Ca', show.legend = FALSE) plotSPC(d, color = '.filledGap', show.legend = FALSE)
data(sp4) depths(sp4) <- id ~ top + bottom # introduce depth logic errors idx <- c(2, 6:7, 8, 12) sp4$top[idx] <- NA # check horizons(sp4)[idx, ] # create gaps by removing logic errors x <- HzDepthLogicSubset(sp4, byhz = TRUE) # check on removed horizons (hzID values) metadata(x)$removed.horizons # inspect par(mar = c(0, 0, 0, 2)) plotSPC(x, width = 0.3, default.color = 'royalblue', name = 'hzID', name.style = 'center-center', cex.names = 0.8, cex.id = 0.66) # fill gaps left by HzDepthLogicSubset() z <- fillHzGaps(x, flag = TRUE) # graphical check plotSPC(z, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE, name.style = 'center-center', cex.names = 0.8, cex.id = 0.66) # fill top to 0 cm z2 <- fillHzGaps(x, flag = TRUE, to_top = 0) plotSPC(z2, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE) # fill bottom to max(SPC) z3 <- fillHzGaps(x, flag = TRUE, to_top = 0, to_bottom = max(x)) plotSPC(z3, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE) ## another example data(sp4) depths(sp4) <- id ~ top + bottom # remove 1st horizons from profiles 1:4 idx <- sp4[,, .FIRST, .HZID] replaceHorizons(sp4) <- horizons(sp4)[-idx[1:4], ] # prepare for dice() z <- fillHzGaps(sp4, to_top = 0, to_bottom = 50, flag = TRUE) # empty-horizon padding is in place for formula interface to dice() d <- dice(z, fm = 0:50 ~ .) plotSPC(d, color = 'Ca', show.legend = FALSE) plotSPC(d, color = '.filledGap', show.legend = FALSE)
Establish which elements within a vector of horizontal positions overlap beyond a given threshold
Desc.
findOverlap(x, thresh) overlapMetrics(x, thresh)
findOverlap(x, thresh) overlapMetrics(x, thresh)
x |
vector of relative horizontal positions, one for each profile |
thresh |
threshold defining "overlap", typically < 1 @return a
|
unique index to affected (overlapping) elements in x
x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10) findOverlap(x, thresh = 0.5) x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10) overlapMetrics(x, thresh = 0.5)
x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10) findOverlap(x, thresh = 0.5) x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10) overlapMetrics(x, thresh = 0.5)
Fix Overlap within a Sequence
fixOverlap(x, thresh = 0.6, method = c("S", "E"), trace = FALSE, ...)
fixOverlap(x, thresh = 0.6, method = c("S", "E"), trace = FALSE, ...)
x |
vector of initial positions, pre-sorted |
thresh |
numeric, overlap threshold defined on the same scale as |
method |
character vector, 'S' for simulated annealing via |
trace |
logical, return full output |
... |
additional arguments to |
When trace = FALSE
, a vector of the same length as x
, preserving rank-ordering and boundary conditions. When trace = TRUE
a list containing the new sequence along with information about objective functions and decisions made during adjustment of x
.
electroStatics_1D()
, SANN_1D()
s <- c(1, 2, 2.3, 4, 5, 5, 7) # simulated annealing, solution is non-deterministic fixOverlap(s, thresh = 0.6, method = 'S') # electrostatics-inspired simulation of particles # solution is deterministic fixOverlap(s, thresh = 0.6, method = 'E') # create a very busy profile with lots of possible overlapping # depth annotation x <- quickSPC( "SPC:AAA|BBB|CCC|D|EEEEE|FF|GG|HH|I|I|JJ|KK|LL|M|N|O|P|QQQQ|RR|S|TTTTTT|U", interval = 1 ) # convert horizon ID to numeric x$z <- as.numeric(x$hzID) # plotSPC arguments .a <- list( width = 0.2, hz.depths = TRUE, name.style = 'center-center', cex.names = 1.5, depth.axis = FALSE, name = NA, color = 'z', show.legend = FALSE, print.id = FALSE, col.palette = hcl.colors(n = 25, palette = 'Spectral', rev = TRUE) ) # set plotSPC default arguments options(.aqp.plotSPC.args = .a) # wrapper function to test label collision solutions testIt <- function(x, ...) { plotSPC(x, ...) # a normalized index of label adjustment .txt <- sprintf( "LAI: %0.3f", get('last_spc_plot', envir = aqp.env)$hz.depth.LAI ) mtext(.txt, side = 1, at = 1, line = -2, cex = 0.8) } # compare and contrast op <- par(mar = c(0, 0, 0, 0), mfcol = c(1, 6)) testIt(x) title('ES (defaults)', line = -3) testIt(x, fixOverlapArgs = list(method = 'S')) title('SANN (defaults)', line = -3) testIt(x, fixOverlapArgs = list(method = 'E', q = 1.5)) title('ES (q = 1.5)', line = -3) testIt(x, fixOverlapArgs = list(method = 'E', q = 1)) title('ES (q = 1)', line = -3) testIt(x, fixOverlapArgs = list(method = 'E', q = 0.5)) title('ES (q = 0.5)', line = -3) testIt(x, fixOverlapArgs = list(method = 'E', q = 0.1)) title('ES (q = 0.1)', line = -3) par(op)
s <- c(1, 2, 2.3, 4, 5, 5, 7) # simulated annealing, solution is non-deterministic fixOverlap(s, thresh = 0.6, method = 'S') # electrostatics-inspired simulation of particles # solution is deterministic fixOverlap(s, thresh = 0.6, method = 'E') # create a very busy profile with lots of possible overlapping # depth annotation x <- quickSPC( "SPC:AAA|BBB|CCC|D|EEEEE|FF|GG|HH|I|I|JJ|KK|LL|M|N|O|P|QQQQ|RR|S|TTTTTT|U", interval = 1 ) # convert horizon ID to numeric x$z <- as.numeric(x$hzID) # plotSPC arguments .a <- list( width = 0.2, hz.depths = TRUE, name.style = 'center-center', cex.names = 1.5, depth.axis = FALSE, name = NA, color = 'z', show.legend = FALSE, print.id = FALSE, col.palette = hcl.colors(n = 25, palette = 'Spectral', rev = TRUE) ) # set plotSPC default arguments options(.aqp.plotSPC.args = .a) # wrapper function to test label collision solutions testIt <- function(x, ...) { plotSPC(x, ...) # a normalized index of label adjustment .txt <- sprintf( "LAI: %0.3f", get('last_spc_plot', envir = aqp.env)$hz.depth.LAI ) mtext(.txt, side = 1, at = 1, line = -2, cex = 0.8) } # compare and contrast op <- par(mar = c(0, 0, 0, 0), mfcol = c(1, 6)) testIt(x) title('ES (defaults)', line = -3) testIt(x, fixOverlapArgs = list(method = 'S')) title('SANN (defaults)', line = -3) testIt(x, fixOverlapArgs = list(method = 'E', q = 1.5)) title('ES (q = 1.5)', line = -3) testIt(x, fixOverlapArgs = list(method = 'E', q = 1)) title('ES (q = 1)', line = -3) testIt(x, fixOverlapArgs = list(method = 'E', q = 0.5)) title('ES (q = 0.5)', line = -3) testIt(x, fixOverlapArgs = list(method = 'E', q = 0.1)) title('ES (q = 0.1)', line = -3) par(op)
Flag perfectly overlapping horizons within a SoilProfileCollection
flagOverlappingHz(x)
flagOverlappingHz(x)
x |
a |
Horizons with NA
depths can be flagged as overlapping. Consider finding these horizons with checkHzDepthLogic(byhz=TRUE)
and removing or fixing them.
logical vector with length (and order) matching the horizons of x
D.E. Beaudette, A.G. Brown
checkHzDepthLogic()
fillHzGaps()
# two overlapping horizons z <- data.frame( id = 'SPC', top = c(0, 25, 25, 50, 75, 100, 100), bottom = c(25, 50, 50, 75, 100, 125, 125) ) # init SPC depths(z) <- id ~ top + bottom # flag perfectly overlapping horizons z$.overlapFlag <- flagOverlappingHz(z) # thematic sketches plotSPC(z, color = '.overlapFlag', hz.depths = TRUE, depth.axis = FALSE, cex.names = 0.85)
# two overlapping horizons z <- data.frame( id = 'SPC', top = c(0, 25, 25, 50, 75, 100, 100), bottom = c(25, 50, 50, 75, 100, 125, 125) ) # init SPC depths(z) <- id ~ top + bottom # flag perfectly overlapping horizons z$.overlapFlag <- flagOverlappingHz(z) # thematic sketches plotSPC(z, color = '.overlapFlag', hz.depths = TRUE, depth.axis = FALSE, cex.names = 0.85)
This is a convenience function for accessing coarse fragment class labels and associated diameter (mm), as defined in various classification systems such as USDA, Unified, and AASHTO.
fragmentClasses( sys = c("usda_simplified", "usda", "international", "unified", "aashto", "mod.wentworth"), flat = FALSE, rounded = FALSE )
fragmentClasses( sys = c("usda_simplified", "usda", "international", "unified", "aashto", "mod.wentworth"), flat = FALSE, rounded = FALSE )
sys |
character, length 1. This is an abbreviated name used to select class labels and fragment diameter. |
flat |
logical. Fragments are flat, only used by USDA systems. |
rounded |
logical. Fragments are rounded, only used by AASHTO system. |
named vector of fragment diameter in mm
Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and Soil Survey Staff. 2012. Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
# use default system: "usda_simplified" fragmentClasses() fragmentClasses(flat = TRUE) fragmentClasses(sys = 'usda') fragmentClasses(sys = 'USDA', flat = TRUE) fragmentClasses(sys = 'international') fragmentClasses(sys = 'unified') fragmentClasses(sys = 'aashto') fragmentClasses(sys = 'aashto', rounded = TRUE) fragmentClasses(sys = 'mod.wentworth')
# use default system: "usda_simplified" fragmentClasses() fragmentClasses(flat = TRUE) fragmentClasses(sys = 'usda') fragmentClasses(sys = 'USDA', flat = TRUE) fragmentClasses(sys = 'international') fragmentClasses(sys = 'unified') fragmentClasses(sys = 'aashto') fragmentClasses(sys = 'aashto', rounded = TRUE) fragmentClasses(sys = 'mod.wentworth')
Sieve applies thresholds to a numeric vector of fragment diameter values, returning fragment size classes. Particle diameter thresholds are evaluated as d < threshold
.
fragmentSieve( diameter, sieves = NULL, ordered = FALSE, prefix = "", new_names = NULL, ... )
fragmentSieve( diameter, sieves = NULL, ordered = FALSE, prefix = "", new_names = NULL, ... )
diameter |
numeric. Vector of diameters of coarse fragments to "sieve". Default |
sieves |
leave as |
ordered |
logical. Return as an ordered factor. |
prefix |
character. Add a prefix to result names? Default: |
new_names |
Optional: apply new labels to result classes. Should match length of |
... |
additional arguments to |
character. Size class labels based on names of sieves
, new_names
, and prefix
(if specified).
Soil Science Division Staff. 2017. Soil survey manual. C. Ditzler, K. Scheffe, and H.C. Monger (eds.). USDA Handbook 18. Government Printing Office, Washington, D.C.
# use a simplified version of the USDA system # common within NRCS/SPSD and NCSS fragmentSieve(c(30, 125, 180, 500, 1000)) # pararock fragments fragmentSieve(c(30, 125, 180, 500, 1000), prefix = 'para') # result as an ordered factor fragmentSieve(c(30, 125, 180, 500, 1000), ordered = TRUE) # USDA system, flat size classes fragmentSieve(c(30, 125, 180, 500, 1000), flat = TRUE) # alternative classification systems fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'usda') fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'international') fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'unified') fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'aashto') fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'mod.wentworth') # custom fragment labels / diameter fragmentSieve( c(30, 125, 180, 500, 1000), sieves = c(clumps = 50, chunks = 300, blocks = 100000) ) # unnamed sieves, generic labels used fragmentSieve(c(10, 50), sieves = c(30, 70)) fragmentSieve(c(10, 50), sieves = c(30, 70), ordered = TRUE)
# use a simplified version of the USDA system # common within NRCS/SPSD and NCSS fragmentSieve(c(30, 125, 180, 500, 1000)) # pararock fragments fragmentSieve(c(30, 125, 180, 500, 1000), prefix = 'para') # result as an ordered factor fragmentSieve(c(30, 125, 180, 500, 1000), ordered = TRUE) # USDA system, flat size classes fragmentSieve(c(30, 125, 180, 500, 1000), flat = TRUE) # alternative classification systems fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'usda') fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'international') fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'unified') fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'aashto') fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'mod.wentworth') # custom fragment labels / diameter fragmentSieve( c(30, 125, 180, 500, 1000), sieves = c(clumps = 50, chunks = 300, blocks = 100000) ) # unnamed sieves, generic labels used fragmentSieve(c(10, 50), sieves = c(30, 70)) fragmentSieve(c(10, 50), sieves = c(30, 70), ordered = TRUE)
Generalize a vector of horizon names, based on new classes, and REGEX
patterns. Or create a new column ghl
in a SoilProfileCollection
(requires a horizon designation name to be defined for the collection, see details)
generalize.hz( x, new, pattern, non.matching.code = "not-used", hzdepm = NULL, ordered = !missing(hzdepm), ... ) ## S4 method for signature 'character' generalizeHz( x, new, pattern, non.matching.code = "not-used", hzdepm = NULL, ordered = !missing(hzdepm), ... ) ## S4 method for signature 'SoilProfileCollection' generalizeHz( x, new, pattern, non.matching.code = "not-used", hzdepm = NULL, ordered = !missing(hzdepm), ghl = "genhz", ... )
generalize.hz( x, new, pattern, non.matching.code = "not-used", hzdepm = NULL, ordered = !missing(hzdepm), ... ) ## S4 method for signature 'character' generalizeHz( x, new, pattern, non.matching.code = "not-used", hzdepm = NULL, ordered = !missing(hzdepm), ... ) ## S4 method for signature 'SoilProfileCollection' generalizeHz( x, new, pattern, non.matching.code = "not-used", hzdepm = NULL, ordered = !missing(hzdepm), ghl = "genhz", ... )
x |
character vector of horizon names or a |
new |
character vector of generalized horizon labels (GHL) |
pattern |
character vector of REGEX patterns, same length as |
non.matching.code |
character, label used for any horizon not matched by |
hzdepm |
numeric vector of horizon mid-points; |
ordered |
logical, |
... |
additional arguments passed to |
ghl |
Generalized Horizon Designation column name (to be created/updated when |
When x
is a SoilProfileCollection
the ghl
column will be updated with the factor results. This requires that the "horizon designation name" metadata be defined for the collection to set the column for input designations.
factor (possibly an ordered factor) of the same length as x
(if character) or as number of horizons in x
(if SoilProfileCollection
)
D.E. Beaudette
Beaudette, D.E., Roudier, P., Skovlin, J. (2016). Probabilistic Representation of Genetic Soil Horizons. In: Hartemink, A., Minasny, B. (eds) Digital Soil Morphometrics. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-28295-4_18
data(sp1) # check original distribution of hz designations table(sp1$name) # generalized horizon labels # character vector input sp1$genhz <- generalizeHz( sp1$name, new = c('O','A','B','C','R'), pattern = c('O', '^A','^B','C','R'), ordered = TRUE ) # see how we did / what we missed table(sp1$genhz, sp1$name) ## a more advanced example, requries `perl = TRUE` # example data x <- c('A', 'AC', 'Bt1', '^AC', 'C', 'BC', 'CB') # new labels n <- c('A', '^AC', 'C') # patterns: # "A anywhere in the name" # "literal '^A' anywhere in the name" # "C anywhere in name, but without preceding A" p <- c('A', '^A', '(?<!A)C') # note additional argument res <- generalizeHz( x, new = n, pattern = p, perl = TRUE ) # double-check: OK table(res, x) ## apply to a SoilProfileCollection data(sp1) depths(sp1) <- id ~ top + bottom # must set horizon designation metadata hzdesgnname(sp1) <- 'name' # result is a SoilProfileCollection x <- generalizeHz( sp1, new = c('O','A','B','C','R'), pattern = c('O', '^A','^B','C','R'), ordered = TRUE ) # GHL stored in 'genhz' column x$genhz # GHL metadata is set GHL(x)
data(sp1) # check original distribution of hz designations table(sp1$name) # generalized horizon labels # character vector input sp1$genhz <- generalizeHz( sp1$name, new = c('O','A','B','C','R'), pattern = c('O', '^A','^B','C','R'), ordered = TRUE ) # see how we did / what we missed table(sp1$genhz, sp1$name) ## a more advanced example, requries `perl = TRUE` # example data x <- c('A', 'AC', 'Bt1', '^AC', 'C', 'BC', 'CB') # new labels n <- c('A', '^AC', 'C') # patterns: # "A anywhere in the name" # "literal '^A' anywhere in the name" # "C anywhere in name, but without preceding A" p <- c('A', '^A', '(?<!A)C') # note additional argument res <- generalizeHz( x, new = n, pattern = p, perl = TRUE ) # double-check: OK table(res, x) ## apply to a SoilProfileCollection data(sp1) depths(sp1) <- id ~ top + bottom # must set horizon designation metadata hzdesgnname(sp1) <- 'name' # result is a SoilProfileCollection x <- generalizeHz( sp1, new = c('O','A','B','C','R'), pattern = c('O', '^A','^B','C','R'), ordered = TRUE ) # GHL stored in 'genhz' column x$genhz # GHL metadata is set GHL(x)
Convert a cross-tabulation of e.g. original horizon designations vs. generalized horizon labels to adjacency matrix form.
genhzTableToAdjMat(tab)
genhzTableToAdjMat(tab)
tab |
table, cross-tabulation of original and generalized horizon labels e.g. |
matrix of numeric values
D.E. Beaudette
This method is used by slab()
for generating labels that assign IDs to layers in a SoilProfileCollection
genSlabLabels( slab.structure = 1, max.d = NULL, n.profiles = NULL, spc = NULL, diced = NULL, ... )
genSlabLabels( slab.structure = 1, max.d = NULL, n.profiles = NULL, spc = NULL, diced = NULL, ... )
slab.structure |
A user-defined slab thickness (defined by an integer), or user-defined structure (numeric vector). See details for |
max.d |
Maximum depth |
n.profiles |
Number of profiles |
spc |
Optional: A SoilProfileCollection |
diced |
Optional: The |
... |
Additional arguments passed to |
The new routine used in aqp 2.0 requires that, at a minimum, the spc
and slab.structure
arguments be specified.
factor. slab IDs, labels are the segment top and bottom depth separated by "-"
Computes pair-wise distance matrix to determine where an attribute increases within a specified vertical distance threshold.
get.increase.depths
performs the conversion of the square matrix
output of get.increase.matrix
back to horizon top depth for where
criteria were met.
get.increase.matrix(p, attr, threshold.fun, vertical.distance) get.increase.depths(p, attr, threshold.fun, vertical.distance)
get.increase.matrix(p, attr, threshold.fun, vertical.distance) get.increase.depths(p, attr, threshold.fun, vertical.distance)
p |
a SoilProfileCollection, containing a single profile |
attr |
horizon attribute name to get the "increase" of |
threshold.fun |
a function that returns the threshold (as a function of attr); may return a constant single value |
vertical.distance |
the vertical distance (determined from difference SPC top depth variable) within which increase must be met |
Uses matrix outer product to determine all pair-wise differences in attr
for the horizons of p
. Supplies attr
to threshold.fun
to determine the
minimum value criterion to return TRUE in output matrix for an "increase".
Also, computes all pair-wise distances in depth dimension to determine
whether the vertical distance criteria have been met simultaneously with
attr
increase.
This function assumes that the threshold.fun
supplied by the user returns
either a constant or a vector of equal length to its input.
Note that the threshold.fun
result is allowed to contain NA, but that will
result in no output for affected cells.
get.increase.depths()
performs the conversion of the square matrix
output of get.increase.matrix
back to horizon top depth for where
criteria were met.
Note that the threshold.fun
result is allowed to contain NA
, but that will
result in no output for affected cells.
Returns a square logical matrix reflecting where the increase criteria were met.
get.increase.depths
converts to horizon top depth by using above
matrix output to determine depths where increase is met.
Returns a numeric vector of depths where the increase requirement is met. For the argillic, the first is the one of interest.
get.increase.depths()
converts to horizon top depth by using above
matrix output to determine depths where increase is met.
Andrew Gene Brown
getArgillicBounds()
, crit.clay.argillic()
getArgillicBounds()
crit.clay.argillic()
data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group p <- sp1[1] attr <- 'prop' # clay contents foo <- get.increase.matrix(p, threshold.fun = crit.clay.argillic, attr = attr, vertical.distance = 30) foo data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group p <- sp1[1] attr <- 'prop' # clay contents foo <- get.increase.depths(p, threshold.fun = crit.clay.argillic, attr = attr, vertical.distance = 30) foo
data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group p <- sp1[1] attr <- 'prop' # clay contents foo <- get.increase.matrix(p, threshold.fun = crit.clay.argillic, attr = attr, vertical.distance = 30) foo data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group p <- sp1[1] attr <- 'prop' # clay contents foo <- get.increase.depths(p, threshold.fun = crit.clay.argillic, attr = attr, vertical.distance = 30) foo
This function accepts input from slab()
(a data.frame
) along with a vector of
horizon names, and returns a data.frame
of the most likely horizon
boundaries.
This function expects that x
is a data.frame
generated by
slab()
. If x
was not generated by slab()
, then o.names
is required.
get.ml.hz(x, o.names = attr(x, which = "original.levels"))
get.ml.hz(x, o.names = attr(x, which = "original.levels"))
x |
|
o.names |
an optional character vector of horizon designations that will be used in the final table |
A data.frame
with the following columns:
hz
: horizon names
top
: horizon top depth
bottom
: horizon bottom depth
confidence
: integrated probability over thickness of each ML horizon, rounded to the nearest integer
pseudo.brier
: A "pseudo"" Brier Score for a multi-class prediction, where the most-likely horizon label is treated as the "correct" outcome. Details on the calculation for traditional Brier Scores here: https://en.wikipedia.org/wiki/Brier_score. Lower values suggest better agreement between ML horizon label and class-wise probabilities.
mean.H
: mean Shannon entropy (bits), derived from probabilities within each most-likely horizon. Larger values suggest more confusion within each ML.
D.E. Beaudette
Beaudette, D. E., Roudier, P., & Skovlin, J. (2016). Probabilistic representation of genetic soil horizons. Digital soil morphometrics, 281-293.
# init SPC data(sp1) depths(sp1) <- id ~ top + bottom # set horizon designation metadata hzdesgnname(sp1) <- 'name' # generalize horizon designations from character vector # result is an ordered factor sp1$genhz <- generalizeHz( sp1$name, new = c('O','A','B','C'), pat = c('O', '^A','^B','C'), ordered = TRUE ) # compute slice-wise GHL probability # so that it sums to contributing fraction # from 0-150cm a <- slab(sp1, fm = ~ genhz, cpm = 1, slab.structure = 0:150) # note original GHL names are set by slab() attr(a, 'original.levels') # generate table of ML horizonation get.ml.hz(a)
# init SPC data(sp1) depths(sp1) <- id ~ top + bottom # set horizon designation metadata hzdesgnname(sp1) <- 'name' # generalize horizon designations from character vector # result is an ordered factor sp1$genhz <- generalizeHz( sp1$name, new = c('O','A','B','C'), pat = c('O', '^A','^B','C'), ordered = TRUE ) # compute slice-wise GHL probability # so that it sums to contributing fraction # from 0-150cm a <- slab(sp1, fm = ~ genhz, cpm = 1, slab.structure = 0:150) # note original GHL names are set by slab() attr(a, 'original.levels') # generate table of ML horizonation get.ml.hz(a)
getArgillicBounds
estimates the upper and lower boundary of argillic diagnostic subsurface horizon for a profile in a single-profile SoilProfileCollection object (p
).
The upper boundary is where the clay increase threshold is met. The function uses crit.clay.argillic
as the threshold function for determining whether a clay increase occurs and get.increase.matrix
to determine whether the increase is met, whether vertical distance of increase is sufficiently small, and in which horizon.
getArgillicBounds( p, hzdesgn = hzdesgnname(p, required = TRUE), clay.attr = hzmetaname(p, "clay", required = TRUE), texcl.attr = hztexclname(p, required = TRUE), require_t = TRUE, bottom.pattern = "Cr|R|Cd", lower.grad.pattern = "^[2-9]*B*CB*[^rtd]*[1-9]*$", sandy.texture.pattern = "-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$", vertical.distance = 30, simplify = TRUE, verbose = FALSE )
getArgillicBounds( p, hzdesgn = hzdesgnname(p, required = TRUE), clay.attr = hzmetaname(p, "clay", required = TRUE), texcl.attr = hztexclname(p, required = TRUE), require_t = TRUE, bottom.pattern = "Cr|R|Cd", lower.grad.pattern = "^[2-9]*B*CB*[^rtd]*[1-9]*$", sandy.texture.pattern = "-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$", vertical.distance = 30, simplify = TRUE, verbose = FALSE )
p |
A SoilProfileCollection |
hzdesgn |
the name of the column/attribute containing the horizon designation; default="hzname" |
clay.attr |
the name of the column/attribute containing the clay content; default="clay" |
texcl.attr |
the name of the column/attribute containing the textural class (used for finding sandy horizons); default="texcl" |
require_t |
require a "t" subscript for positive identification of upper and lower bound of argillic? default: TRUE |
bottom.pattern |
regular expression passed to |
lower.grad.pattern |
this is a pattern for adjusting the bottom depth of the argillic horizon upwards from the bottom depth of the soil. The absence of illuviation is used as a final control on horizon pattern matching. |
sandy.texture.pattern |
this is a pattern for matching sandy textural classes: |
vertical.distance |
Vertical distance in which clay increase must be met. Default |
simplify |
Return a length 2 vector with upper and lower boundary when |
verbose |
Print out information about 't' subscripts, sandy textures, plow layers and lower gradational horizons? |
The lower boundary is first approximated as the depth to a lithic/paralithic/densic contact, or some other horizon matchable by a custom regular expression pattern. Subsequently, that boundary is extended upwards to the end of "evidence of illuviation."
The depth to contact is estimated using 'bottom.pattern' "Cr|R|Cd" by default. It matches anything containing Cr, R or Cd.
The lower gradational horizon regular expression ‘lower.grad.pattern' default is ^[2-9]*B*CB*[^rtd]*[1-9]*$}
. It matches anything that starts with a lithologic discontinuity (or none) and a C master horizon designation. May contain B as second horizon designation in transitional horizon. May not contain 'r' or 't' subscript.
The minimum thickness of the argillic horizon is dependent on whether all subhorizons are "sandy" or not. The sandy.texture.pattern
default -S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$
captures USDA textural class fine earth fractions that meet "sandy" particle size class criteria.
There also is an option ‘require_t' to omit the requirement for evidence of eluviation in form of 't' subscript in 'hzdesgn'. Even if "t" subscript is not required for positive identification, the presence of lower gradational C horizons lacking 't' will still be used to modify the lower boundary upward from a detected contact, if needed. If this behavior is not desired, just set 'lower.grad.pattern' to something that will not match any horizons in your data.
Returns a numeric vector; first value is top depth, second value is bottom depth. If as.list is TRUE, returns a list with top depth named "ubound" and bottom depth named "lbound". If p
has more than one profile or if simplify = FALSE
the result is a data.frame containing profile ID, upper and lower boundary columns.
Andrew G. Brown
data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # set required metadata hzdesgnname(sp1) <- 'name' hztexclname(sp1) <- 'texture' hzmetaname(sp1, 'clay') <- 'prop' x <- getArgillicBounds(sp1) x
data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # set required metadata hzdesgnname(sp1) <- 'name' hztexclname(sp1) <- 'texture' hzmetaname(sp1, 'clay') <- 'prop' x <- getArgillicBounds(sp1) x
Find all intervals that are potentially part of a Cambic horizon excluding those that are part of an argillic horizon (defined either by depth interval or getArgillicBounds()
).
There may be multiple cambic horizons (indexes) in a profile. Each cambic index has a top and bottom depth associated: cambic_top and cambic_bottom. This result is designed to be used for single profiles, or with profileApply(..., frameify = TRUE)
getCambicBounds( p, hzdesgn = hzdesgnname(p, required = TRUE), texcl.attr = hztexclname(p, required = TRUE), clay.attr = hzmetaname(p, "clay", required = TRUE), argi_bounds = NULL, d_value = "d_value", m_value = "m_value", m_chroma = "m_chroma", sandy.texture.pattern = "-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$", ... )
getCambicBounds( p, hzdesgn = hzdesgnname(p, required = TRUE), texcl.attr = hztexclname(p, required = TRUE), clay.attr = hzmetaname(p, "clay", required = TRUE), argi_bounds = NULL, d_value = "d_value", m_value = "m_value", m_chroma = "m_chroma", sandy.texture.pattern = "-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$", ... )
p |
A single-profile SoilProfileCollection |
hzdesgn |
Column name containing horizon designations. |
texcl.attr |
Arguments to |
clay.attr |
Arguments to |
argi_bounds |
Optional: numeric vector of length 2 with top and bottom of argillic; (Default: NULL) |
d_value |
Column name containing dry value. Default: d_value |
m_value |
Column name containing moist value. Default: m_value |
m_chroma |
Column name containing moist chroma Default: m_chroma |
sandy.texture.pattern |
this is a pattern for matching sandy textural classes: |
... |
Arguments to |
A data.frame
containing profile, cambic indexes, along with top and bottom depths.
Andrew G. Brown
# construct a fake profile spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxerepts", hzname = c("A","AB","Bw","BC","R"), hzdept = c(0, 20, 32, 42, 49), hzdepb = c(20, 32, 42, 49, 200), clay = c(19, 22, 22, 21, NA), texcl = c("l","l","l", "l","br"), d_value = c(5, 5, 5, 6, NA), m_value = c(2.5, 3, 3, 4, NA), m_chroma = c(2, 3, 4, 4, NA)) # promote to SoilProfileCollection depths(spc) <- id ~ hzdept + hzdepb # set required metadata hzdesgnname(spc) <- 'hzname' hztexclname(spc) <- 'texcl' hzmetaname(spc, 'clay') <- 'clay' # print results in table getCambicBounds(spc)
# construct a fake profile spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxerepts", hzname = c("A","AB","Bw","BC","R"), hzdept = c(0, 20, 32, 42, 49), hzdepb = c(20, 32, 42, 49, 200), clay = c(19, 22, 22, 21, NA), texcl = c("l","l","l", "l","br"), d_value = c(5, 5, 5, 6, NA), m_value = c(2.5, 3, 3, 4, NA), m_chroma = c(2, 3, 4, 4, NA)) # promote to SoilProfileCollection depths(spc) <- id ~ hzdept + hzdepb # set required metadata hzdesgnname(spc) <- 'hzname' hztexclname(spc) <- 'texcl' hzmetaname(spc, 'clay') <- 'clay' # print results in table getCambicBounds(spc)
Non-standard Munsell notation ('7.9YR 2.7/2.0') can be matched (nearest-neighbor, no interpolation) to the closest color within the munsell
sRGB/CIELAB look-up table via getClosestMunsellChip()
. A more accurate estimate of sRGB values from non-standard notation can be achieved with the munsellinterpol package. For example, conversion from Munsell to CIELAB, assuming a D65 illuminant via: MunsellToLab('0.1Y 3.3/4.4', white='D65', adapt='Bradford')
.
getClosestMunsellChip(munsellColor, convertColors = TRUE, ...)
getClosestMunsellChip(munsellColor, convertColors = TRUE, ...)
munsellColor |
character vector of strings containing Munsell notation of color, e.g. '10YR 4/3', not NA-safe |
convertColors |
logical, should parsed Munsell colors be converted into sRGB values |
... |
further arguments to |
a data.frame
when convertColors=TRUE
, otherwise character vector
# convert a non-standard color to closest "chip" in `munsell` look-up table getClosestMunsellChip('7.9YR 2.7/2.0', convertColors = FALSE) # convert directly to R color getClosestMunsellChip('7.9YR 2.7/2.0') # special case for 2.5 value -> no rounding, we have these records in the conversion LUT getClosestMunsellChip('7.5YR 2.5/2', convertColors = FALSE) getClosestMunsellChip('7.5YR 6.8/4.4', convertColors = FALSE)
# convert a non-standard color to closest "chip" in `munsell` look-up table getClosestMunsellChip('7.9YR 2.7/2.0', convertColors = FALSE) # convert directly to R color getClosestMunsellChip('7.9YR 2.7/2.0') # special case for 2.5 value -> no rounding, we have these records in the conversion LUT getClosestMunsellChip('7.5YR 2.5/2', convertColors = FALSE) getClosestMunsellChip('7.5YR 6.8/4.4', convertColors = FALSE)
Return horizon IDs of the deepest horizon within each profile of a SoilProfileCollection
. IDs are returned in the same order as profile_id(x)
. Horizon top depths are used because there are cases where bottom depths may be missing.
getLastHorizonID(x)
getLastHorizonID(x)
x |
a |
Generate a boolean matrix of soil depth classes, actual soil depth class, and estimate of soil depth from a SoilProfileCollection
object. Soil depths are estimated using pattern matching applied to horizon designations, by estimateSoilDepth()
. The default REGEX pattern (p = 'Cr|R|Cd'
) will match most "contacts" described using the USDA / Soil Taxonomy horizon designation conventions.
getSoilDepthClass( f, depth.classes = c(very.shallow = 25, shallow = 50, mod.deep = 100, deep = 150, very.deep = 10000), ... )
getSoilDepthClass( f, depth.classes = c(very.shallow = 25, shallow = 50, mod.deep = 100, deep = 150, very.deep = 10000), ... )
f |
a SoilProfileCollection object |
depth.classes |
a named vector of classes and depth breaks |
... |
arguments passed to |
a data.frame
containing soil depth and depth class for each
profile, see examples
D.E. Beaudette and J.M. Skovlin
data(sp1) depths(sp1) <- id ~ top + bottom # generate depth-class matrix sdc <- getSoilDepthClass(sp1, name = 'name') # inspect head(sdc) # join back into sp1 as site-level data site(sp1) <- sdc ## Not run: # sample data data(gopheridge, package='soilDB') getSoilDepthClass(gopheridge, name = 'hzname') ## End(Not run)
data(sp1) depths(sp1) <- id ~ top + bottom # generate depth-class matrix sdc <- getSoilDepthClass(sp1, name = 'name') # inspect head(sdc) # join back into sp1 as site-level data site(sp1) <- sdc ## Not run: # sample data data(gopheridge, package='soilDB') getSoilDepthClass(gopheridge, name = 'hzname') ## End(Not run)
Find the thickness of horizon designations, or any other character patterns, that are continuous from the soil surface (depth = 0 or shallowest depth in profile).
getSurfaceHorizonDepth( p, pattern, hzdesgn = hzdesgnname(p, required = TRUE), simplify = TRUE ) getMineralSoilSurfaceDepth( p, hzdesgn = hzdesgnname(p, required = TRUE), pattern = "O", simplify = TRUE ) getPlowLayerDepth( p, hzdesgn = hzdesgnname(p, required = TRUE), pattern = "^Ap[^b]*", simplify = TRUE )
getSurfaceHorizonDepth( p, pattern, hzdesgn = hzdesgnname(p, required = TRUE), simplify = TRUE ) getMineralSoilSurfaceDepth( p, hzdesgn = hzdesgnname(p, required = TRUE), pattern = "O", simplify = TRUE ) getPlowLayerDepth( p, hzdesgn = hzdesgnname(p, required = TRUE), pattern = "^Ap[^b]*", simplify = TRUE )
p |
a SoilProfileCollection |
pattern |
a regular expression pattern to match for all horizons to be considered part of the "surface". |
hzdesgn |
column name containing horizon designation. Default: |
simplify |
logical. Return single profile results as vector (default: |
The horizon designation to match is specified with the regular expression pattern 'pattern'. All horizons matching that pattern, that are continuous from the soil surface, count towards the depth / thickness value that is ultimately returned. For instance: horizon designations: A1-A2-A3-C-Ab , would return A3 bottom depth given pattern = "^A[1-9]*$"
.
getSurfaceHorizonDepth
is used by getPlowLayerDepth
for matching Ap horizons; and, it is used by getMineralSoilSurfaceDepth
to find the thickness of O horizons in lieu of lab data.
a numeric value corresponding to the bottom depth of the last horizon matching 'pattern' that is contiguous with other matching horizons up to the soil surface. If length(p) > 1
then a data.frame containing profile ID, horizon ID, top or bottom depths, horizon designation and pattern.
Andrew G. Brown
library(aqp) data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group p <- sp1[1] q <- sp1[2] # look at horizon designations in p and q p$name q$name # thickness of all surface horizons containing A getSurfaceHorizonDepth(p, pattern = 'A', hzdesgn = 'name') # thickness of all surface horizons that start with A getSurfaceHorizonDepth(p, pattern = '^A', hzdesgn = 'name') # thickness of all surface horizons that start with A, and the A is not followed by B getSurfaceHorizonDepth(p, pattern = '^A[^B]*', hzdesgn = 'name') # thickness of all surface horizons that start with A # followed by a number from _2_ to 9 (returns ZERO) getSurfaceHorizonDepth(p, pattern = '^A[2-9]*', hzdesgn = 'name') # getPlowLayerDepth matches first two horizons in fake Ap horizon data with "buried Ap" p$aphorizons <- c("Ap1","Ap2","AB", rep('C', nrow(p) - 4), "Apb") getPlowLayerDepth(p, hzdesgn = 'aphorizons') # getMineralSoilSurfaceDepthmatches first 3 horizons in fake O horizon data p$ohorizons <- c("Oi1","Oi2","Oe", rep('C', nrow(p) - 4), "2C") getMineralSoilSurfaceDepth(p, hzdesgn='ohorizons') # matches first Oi horizon with original horizon designations of pedon 2 getMineralSoilSurfaceDepth(q, hzdesgn='name')
library(aqp) data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group p <- sp1[1] q <- sp1[2] # look at horizon designations in p and q p$name q$name # thickness of all surface horizons containing A getSurfaceHorizonDepth(p, pattern = 'A', hzdesgn = 'name') # thickness of all surface horizons that start with A getSurfaceHorizonDepth(p, pattern = '^A', hzdesgn = 'name') # thickness of all surface horizons that start with A, and the A is not followed by B getSurfaceHorizonDepth(p, pattern = '^A[^B]*', hzdesgn = 'name') # thickness of all surface horizons that start with A # followed by a number from _2_ to 9 (returns ZERO) getSurfaceHorizonDepth(p, pattern = '^A[2-9]*', hzdesgn = 'name') # getPlowLayerDepth matches first two horizons in fake Ap horizon data with "buried Ap" p$aphorizons <- c("Ap1","Ap2","AB", rep('C', nrow(p) - 4), "Apb") getPlowLayerDepth(p, hzdesgn = 'aphorizons') # getMineralSoilSurfaceDepthmatches first 3 horizons in fake O horizon data p$ohorizons <- c("Oi1","Oi2","Oe", rep('C', nrow(p) - 4), "2C") getMineralSoilSurfaceDepth(p, hzdesgn='ohorizons') # matches first Oi horizon with original horizon designations of pedon 2 getMineralSoilSurfaceDepth(q, hzdesgn='name')
GHL()
: Get column name containing generalized horizon labels
GHL<-
: Set generalized horizon label column name
## S4 method for signature 'SoilProfileCollection' GHL(object, required = FALSE) ## S4 replacement method for signature 'SoilProfileCollection' GHL(object, required = FALSE) <- value
## S4 method for signature 'SoilProfileCollection' GHL(object, required = FALSE) ## S4 replacement method for signature 'SoilProfileCollection' GHL(object, required = FALSE) <- value
object |
a SoilProfileCollection |
required |
logical, is this attribute required? If it is, set to |
value |
character, name of column containing generalized horizon labels |
Store the column name containing generalized horizon labels in the metadata slot of the SoilProfileCollection.
data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # set horizon designation column GHL(sp1) <- "name" # get horizon designation column GHL(sp1)
data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # set horizon designation column GHL(sp1) <- "name" # get horizon designation column GHL(sp1)
Make a "clod" of horizons from a SoilProfileCollection given a point or a depth interval to intersect. The interval [z1,z2]
may be profile-specific (equal in length to p
), or may be recycled over all profiles (if boundaries are length 1). For "point" intersection, z2
may be left as the default value NULL
.
trunc()
is a wrapper method (using S4 generic) for glom()
where truncate=TRUE
## S4 method for signature 'SoilProfileCollection' glom( p, z1, z2 = NULL, ids = FALSE, df = FALSE, truncate = FALSE, invert = FALSE, fill = FALSE, modality = "all", drop = !fill, ... ) ## S4 method for signature 'SoilProfileCollection' trunc(x, z1, z2, ...)
## S4 method for signature 'SoilProfileCollection' glom( p, z1, z2 = NULL, ids = FALSE, df = FALSE, truncate = FALSE, invert = FALSE, fill = FALSE, modality = "all", drop = !fill, ... ) ## S4 method for signature 'SoilProfileCollection' trunc(x, z1, z2, ...)
p |
A SoilProfileCollection |
z1 |
numeric vector of top depth to intersect horizon (required). Can be an expression involving |
z2 |
numeric vector bottom depth of intersection interval (optional). Can also be an expression involving |
ids |
return only horizon IDs? default: |
df |
return a data.frame, by intersection with |
truncate |
truncate horizon top and bottom depths to |
invert |
get horizons outside the interval |
fill |
keep sites and preserve order for profiles that do not have horizons in interval by filling with a single horizon with |
modality |
default: |
drop |
Inverted alias of fill for consistency with other methods. When |
... |
|
x |
A SoilProfileCollection |
"To glom" is "to steal" or to "become stuck or attached to". The word is related to the compound "glomalin", which is a glycoprotein produced by mycorrhizal fungi in soil.
The full depth range of horizons included within the interval are returned (a "ragged" SoilProfileCollection) unless the truncate
argument is set as TRUE
. Horizon intersection is based on unique ID hzidname(spc)
and depth range of interest. Profiles that lack data in the range of interest will be dropped from the resulting SoilProfileCollection.
If inverting results with invert
, it is possible that thick horizons (whose boundaries span wider than the specified interval) will be split into two horizons, where previously they were one. This may make the results from ids = TRUE
different from what you expect, as they will be based on a profile with an "extra" horizon and re-calculated unique horizon ID (hzidname(spc)
) "hzID"
.
a SoilProfileCollection, data.frame, or a vector of horizon IDs. NULL
if no result.
Andrew G. Brown
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group p <- glom(sp1, 25, 150) # 28 horizons nrow(p) # inspect graphically par(mar = c(1,1,3,1)) plot(p, color = "prop", max.depth = 200) abline(h = c(25, 100), lty = 2) ## glom(..., truncate = TRUE) p2 <- glom(sp1, 25, 150, truncate = TRUE) # 28 horizons nrow(p2) # inspect graphically par(mar = c(1,1,3,1)) plot(p2, color = "prop", max.depth = 200) abline(h = c(25, 100), lty = 2) ## glom(..., truncate = TRUE, invert = TRUE) p3 <- glom(sp1, 25, 150, truncate = TRUE, invert = TRUE) # 45 horizons nrow(p3) # inspect graphically par(mar = c(1,1,3,1)) plot(p3, color = "prop", max.depth = 200) abline(h = c(25, 100), lty = 2) ## profile-specific interval, using expressions evaluated within sp1@site # calculate some new site-level variables containing target interval sp1$glom_top <- (1:9) * 10 sp1$glom_bottom <- 10 + sp1$glom_top # glom evaluates non-standard expressions using siteNames(sp1) column names p4 <- glom(sp1, glom_top / 2, glom_bottom * 1.2, truncate = TRUE) # inspect graphically par(mar = c(1,1,3,1)) plot(p4, color = "prop", max.depth = 200) # load sample data data("sp3") # promote to SPC depths(sp3) <- id ~ top + bottom ### TRUNCATE all profiles in sp3 to [0,25] # set up plot parameters par(mfrow=c(2,1), mar=c(0,0,0,0)) # full profiles plot(sp3) # trunc'd profiles plot(trunc(sp3, 0, 25))
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) data(sp1, package = 'aqp') depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group p <- glom(sp1, 25, 150) # 28 horizons nrow(p) # inspect graphically par(mar = c(1,1,3,1)) plot(p, color = "prop", max.depth = 200) abline(h = c(25, 100), lty = 2) ## glom(..., truncate = TRUE) p2 <- glom(sp1, 25, 150, truncate = TRUE) # 28 horizons nrow(p2) # inspect graphically par(mar = c(1,1,3,1)) plot(p2, color = "prop", max.depth = 200) abline(h = c(25, 100), lty = 2) ## glom(..., truncate = TRUE, invert = TRUE) p3 <- glom(sp1, 25, 150, truncate = TRUE, invert = TRUE) # 45 horizons nrow(p3) # inspect graphically par(mar = c(1,1,3,1)) plot(p3, color = "prop", max.depth = 200) abline(h = c(25, 100), lty = 2) ## profile-specific interval, using expressions evaluated within sp1@site # calculate some new site-level variables containing target interval sp1$glom_top <- (1:9) * 10 sp1$glom_bottom <- 10 + sp1$glom_top # glom evaluates non-standard expressions using siteNames(sp1) column names p4 <- glom(sp1, glom_top / 2, glom_bottom * 1.2, truncate = TRUE) # inspect graphically par(mar = c(1,1,3,1)) plot(p4, color = "prop", max.depth = 200) # load sample data data("sp3") # promote to SPC depths(sp3) <- id ~ top + bottom ### TRUNCATE all profiles in sp3 to [0,25] # set up plot parameters par(mfrow=c(2,1), mar=c(0,0,0,0)) # full profiles plot(sp3) # trunc'd profiles plot(trunc(sp3, 0, 25))
glomApply()
is a function used for subsetting SoilProfileCollection objects by depth. It is a wrapper around glom
which is intended to subset single-profile SPCs based on depth intervals/intersection.
glomApply
works by accepting a function .fun
as argument. This function is used on each profile to process a multi-profile SPC for input to glom
(via profileApply
). For each profile, .fun
returns a 2-length numeric vector of top and bottom boundaries glom
arguments: z1
, z2
.
glomApply
provides the option to generate profile-specific glom depths for a large SPC and handles iteration and rebuilding of a subset SPC object. Optional arguments include: truncate
to cut the boundaries to specified [z1, z2]
; invert
to the portion outside [z1, z2]
, modality
to either "all"
horizons or "thickest"
horizon in the glom
interval. ...
are various expressions you can run on the individual profiles using NSE, similar to mutate
.
glomApply( object, .fun = NULL, truncate = FALSE, invert = FALSE, modality = "all", ..., chunk.size = 100 )
glomApply( object, .fun = NULL, truncate = FALSE, invert = FALSE, modality = "all", ..., chunk.size = 100 )
object |
A SoilProfileCollection |
.fun |
A function that returns vector with top and bottom depth ( |
truncate |
Truncate horizon top and bottom depths to |
invert |
Truncate horizon top and bottom depths to |
modality |
Aggregation method for glom result. Default |
... |
A set of comma-delimited R expressions that resolve to a transformation to be applied to a single profile e.g |
chunk.size |
Chunk size parameter for |
A SoilProfileCollection.
Andrew G. Brown.
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) data(sp3) depths(sp3) <- id ~ top + bottom # init horizon designation column in metadata, used by estimateSoilDepth hzdesgnname(sp3) <- 'name' # constant depths, whole horizon returns by default plot(glomApply(sp3, function(p) c(25,100))) # constant depths, truncated #(see aqp::trunc for helper function) plot(glomApply(sp3, function(p) c(25,30), truncate = TRUE)) # constant depths, inverted plot(glomApply(sp3, function(p) c(25,100), invert = TRUE)) # constant depths, inverted + truncated (same as above) plot(glomApply(sp3, function(p) c(25,30), invert = TRUE, truncate=TRUE)) # random boundaries in each profile plot(glomApply(sp3, function(p) round(sort(runif(2, 0, max(sp3)))))) # random boundaries in each profile (truncated) plot(glomApply(sp3, function(p) round(sort(runif(2, 0, max(sp3)))), truncate = TRUE)) # calculate some boundaries as site level attribtes sp3$glom_top <- profileApply(sp3, getMineralSoilSurfaceDepth) sp3$glom_bottom <- profileApply(sp3, estimateSoilDepth) # use site level attributes for glom intervals for each profile plot(glomApply(sp3, function(p) return(c(p$glom_top, p$glom_bottom))))
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) data(sp3) depths(sp3) <- id ~ top + bottom # init horizon designation column in metadata, used by estimateSoilDepth hzdesgnname(sp3) <- 'name' # constant depths, whole horizon returns by default plot(glomApply(sp3, function(p) c(25,100))) # constant depths, truncated #(see aqp::trunc for helper function) plot(glomApply(sp3, function(p) c(25,30), truncate = TRUE)) # constant depths, inverted plot(glomApply(sp3, function(p) c(25,100), invert = TRUE)) # constant depths, inverted + truncated (same as above) plot(glomApply(sp3, function(p) c(25,30), invert = TRUE, truncate=TRUE)) # random boundaries in each profile plot(glomApply(sp3, function(p) round(sort(runif(2, 0, max(sp3)))))) # random boundaries in each profile (truncated) plot(glomApply(sp3, function(p) round(sort(runif(2, 0, max(sp3)))), truncate = TRUE)) # calculate some boundaries as site level attribtes sp3$glom_top <- profileApply(sp3, getMineralSoilSurfaceDepth) sp3$glom_bottom <- profileApply(sp3, estimateSoilDepth) # use site level attributes for glom intervals for each profile plot(glomApply(sp3, function(p) return(c(p$glom_top, p$glom_bottom))))
grepSPC()
is a shorthand function for subsetting SoilProfileCollection
objects. For example, by filter(grepl(spc, ...))
or filter(stringr::str_detect(spc, ...))
. It provides pattern matching for a single text-based site or horizon level attribute.
grepSPC(object, attr, pattern, ...)
grepSPC(object, attr, pattern, ...)
object |
A SoilProfileCollection |
attr |
A character vector (column in object) for matching patterns against. |
pattern |
REGEX pattern to match in |
... |
Additional arguments are passed to |
A SoilProfileCollection.
Andrew G. Brown.
Plot a collection of soil profiles, sorted by group.
The left-right ordering of groups can be adjusted by converting
groups
into a factor and explicitly setting factor levels.
Alpha-numeric ordering is used for all other types.
groupedProfilePlot( x, groups, group.name.offset = -5, group.name.cex = 0.75, group.line.col = "RoyalBlue", group.line.lwd = 2, group.line.lty = 2, break.style = c("line", "arrow", "both"), break.offset = 0.5, arrow.offset = group.name.offset + 5, arrow.length = 0.1, ... )
groupedProfilePlot( x, groups, group.name.offset = -5, group.name.cex = 0.75, group.line.col = "RoyalBlue", group.line.lwd = 2, group.line.lty = 2, break.style = c("line", "arrow", "both"), break.offset = 0.5, arrow.offset = group.name.offset + 5, arrow.length = 0.1, ... )
x |
a |
groups |
the name of a site-level attribute that defines groups, factor levels will influence plotting order |
group.name.offset |
vertical offset for group names, single numeric value or vector of offsets |
group.name.cex |
font size for group names |
group.line.col |
color for line that splits groups |
group.line.lwd |
width of line that splits groups |
group.line.lty |
style of line that splits groups |
break.style |
style of group boundaries: "line", "arrow", "both" |
break.offset |
horizontal offset used to place vertical breaks and/or arrows, shifted slightly to the right of default when |
arrow.offset |
vertical offset for "arrow" style boundaries, single numeric value or vector of offsets |
arrow.length |
value passed to |
... |
further arguments to |
D.E. Beaudette
# sample data data(sp1) # convert colors from Munsell to hex-encoded RGB sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # add a groups sp1$group.2 <- sprintf("%s-%s", rev(LETTERS[1:3]), sp1$group) # convert fake groupt to factor with new levels sp1$group.3 <- factor(sp1$group.2, levels=c('C-2', 'B-2', 'A-2', 'C-1', 'B-1', 'A-1')) # plot profiles, sorted and annotated by 'group' (integers) par(mar=c(1,1,1,1)) groupedProfilePlot(sp1, groups='group', max.depth=150, group.name.offset = -5, id.style='side') # plot profiles, sorted and annotated by 'group.2' (characters) par(mar=c(1,1,1,1)) groupedProfilePlot(sp1, groups='group.2', max.depth=150, group.name.offset = -5, id.style='side') # plot profiles, sorted and annotated by 'group.3' (characters) par(mar=c(1,1,1,1)) groupedProfilePlot(sp1, groups='group.3', max.depth=150, group.name.offset = -5, id.style='side') # make fake site-level attribute and adjust levels sp1$new.group <- sample(letters[1:3], size=length(sp1), replace=TRUE) # tabulate pedons / group tab <- table(sp1$new.group) # sort large -> small tab <- sort(tab, decreasing = TRUE) # set levels based on sorted tabulation # assign custom labels sp1$new.group <- factor(sp1$new.group, levels=names(tab), labels=paste0(names(tab), ' (', tab, ')')) groupedProfilePlot(sp1, groups='new.group', max.depth=150, group.name.offset = -10, id.style='side') # offsets can be set using a vector of values, recycled as needed groupedProfilePlot(sp1, groups='new.group', max.depth=150, group.name.offset=c(-10, -5), id.style='side') # annotate with arrows instead of vertical lines groupedProfilePlot(sp1, groups='new.group', max.depth=150, group.name.offset=c(-10, -12), break.style='arrow', arrow.offset=-3, group.line.lty = 1, group.line.lwd = 1, id.style='side') ## Not run: # more complete example using data from soilDB package data(loafercreek, package='soilDB') par(mar=c(1,1,1,1)) # lines groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5, group.name.offset = -10) # arrows groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5, group.name.offset = -10, break.style ='arrow', group.line.lty = 1, group.line.lwd = 1) # both groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5, group.name.offset = -10, break.style ='both', group.line.lty = 1, group.line.lwd = 1) ## End(Not run)
# sample data data(sp1) # convert colors from Munsell to hex-encoded RGB sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # add a groups sp1$group.2 <- sprintf("%s-%s", rev(LETTERS[1:3]), sp1$group) # convert fake groupt to factor with new levels sp1$group.3 <- factor(sp1$group.2, levels=c('C-2', 'B-2', 'A-2', 'C-1', 'B-1', 'A-1')) # plot profiles, sorted and annotated by 'group' (integers) par(mar=c(1,1,1,1)) groupedProfilePlot(sp1, groups='group', max.depth=150, group.name.offset = -5, id.style='side') # plot profiles, sorted and annotated by 'group.2' (characters) par(mar=c(1,1,1,1)) groupedProfilePlot(sp1, groups='group.2', max.depth=150, group.name.offset = -5, id.style='side') # plot profiles, sorted and annotated by 'group.3' (characters) par(mar=c(1,1,1,1)) groupedProfilePlot(sp1, groups='group.3', max.depth=150, group.name.offset = -5, id.style='side') # make fake site-level attribute and adjust levels sp1$new.group <- sample(letters[1:3], size=length(sp1), replace=TRUE) # tabulate pedons / group tab <- table(sp1$new.group) # sort large -> small tab <- sort(tab, decreasing = TRUE) # set levels based on sorted tabulation # assign custom labels sp1$new.group <- factor(sp1$new.group, levels=names(tab), labels=paste0(names(tab), ' (', tab, ')')) groupedProfilePlot(sp1, groups='new.group', max.depth=150, group.name.offset = -10, id.style='side') # offsets can be set using a vector of values, recycled as needed groupedProfilePlot(sp1, groups='new.group', max.depth=150, group.name.offset=c(-10, -5), id.style='side') # annotate with arrows instead of vertical lines groupedProfilePlot(sp1, groups='new.group', max.depth=150, group.name.offset=c(-10, -12), break.style='arrow', arrow.offset=-3, group.line.lty = 1, group.line.lwd = 1, id.style='side') ## Not run: # more complete example using data from soilDB package data(loafercreek, package='soilDB') par(mar=c(1,1,1,1)) # lines groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5, group.name.offset = -10) # arrows groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5, group.name.offset = -10, break.style ='arrow', group.line.lty = 1, group.line.lwd = 1) # both groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5, group.name.offset = -10, break.style ='both', group.line.lty = 1, group.line.lwd = 1) ## End(Not run)
Store groupings within a profile collection.
groupSPC(object, ...)
groupSPC(object, ...)
object |
SoilProfileCollection. |
... |
One or more expressions evaluated within the context of |
This function makes an (educated) guess at an appropriate set of levels for generalized horizon labels using the median of horizon depth mid-points.
guessGenHzLevels(x, hz = GHL(x, required = TRUE))
guessGenHzLevels(x, hz = GHL(x, required = TRUE))
x |
a |
hz |
name of horizon-level attribute containing generalized horizon labels, see details |
This function is useful when groups of horizons have been generalized via
some method other than generalize.hz
. For example, it may be useful
to generalize horizons using labels derived from slice depths. The default
sorting of these labels will not follow a logical depth-wise sorting when
converted to a factor. guessGenHzLevels
does a good job of "guessing"
the proper ordering of these labels based on median horizon depth mid-point.
a list:
levels |
a vector of levels sorted by median horizon depth mid-point |
median.depths |
a vector of median horizon mid-points |
D.E. Beaudette
# load some example data data(sp1, package='aqp') # upgrade to SoilProfileCollection depths(sp1) <- id ~ top + bottom # generalize horizon names n <- c('O', 'A', 'B', 'C') p <- c('O', 'A', 'B', 'C') sp1$genhz <- generalize.hz(sp1$name, n, p) # note: levels are in the order in which originally defined: levels(sp1$genhz) # generalize horizons by depth slice s <- dice(sp1, c(5, 10, 15, 25, 50, 100, 150) ~ .) s$slice <- paste0(s$top, ' cm') # not a factor levels(s$slice) # the proper ordering of these new labels can be guessed from horizon depths guessGenHzLevels(s, 'slice') # convert to factor, and set proper order s$slice <- factor(s$slice, levels=guessGenHzLevels(s, 'slice')$levels) # that is better levels(s$slice)
# load some example data data(sp1, package='aqp') # upgrade to SoilProfileCollection depths(sp1) <- id ~ top + bottom # generalize horizon names n <- c('O', 'A', 'B', 'C') p <- c('O', 'A', 'B', 'C') sp1$genhz <- generalize.hz(sp1$name, n, p) # note: levels are in the order in which originally defined: levels(sp1$genhz) # generalize horizons by depth slice s <- dice(sp1, c(5, 10, 15, 25, 50, 100, 150) ~ .) s$slice <- paste0(s$top, ' cm') # not a factor levels(s$slice) # the proper ordering of these new labels can be guessed from horizon depths guessGenHzLevels(s, 'slice') # convert to factor, and set proper order s$slice <- factor(s$slice, levels=guessGenHzLevels(s, 'slice')$levels) # that is better levels(s$slice)
guessHzAttrName()
: Guess the horizon column name where possible/preferred formative elements are known. There is a preference for records where more optional requirements are met to handle cases where there will be many matches. For example, working with soil data one might have "low, RV and high" total clay, as well as clay fractions. One could distinguish between these different measurements using standard formative elements for column names from the database of interest. Result is the first match in horizonNames(x)
with the most required plus optional patterns matched.
e.g. guessHzAttrName(x, attr="clay", optional=c("total", "_r"))
matches (claytotal_r == totalclay_r
) over (clay_r == claytotal == totalclay
) over clay
.
guessHzDesgnName()
: DEPRECATED This follows the historic convention used by aqp::plotSPC()
looking for "hzname" or other column names containing the regular expression "name". If the pattern "name" is not found, the pattern "desgn" is searched as a fallback, as "hzdesgn" or "hz_desgn" are other common column naming schemes for horizon designation name.
guessHzTexClName()
: DEPRECATED This function is used to provide a texture class attribute column name to functions. It will use regular expressions to match "texcl" which is typically the texture of the fine earth fraction, without modifiers or in-lieu textures. Alternately, it will match "texture" for cases where "texcl" is absent (e.g. in NASIS Component Horizon).
guessHzAttrName(x, attr, optional = NULL, verbose = TRUE, required = FALSE) guessHzDesgnName(x, required = FALSE) guessHzTexClName(x, required = FALSE)
guessHzAttrName(x, attr, optional = NULL, verbose = TRUE, required = FALSE) guessHzDesgnName(x, required = FALSE) guessHzTexClName(x, required = FALSE)
x |
A SoilProfileCollection |
attr |
character. A regular expression containing required formative element of attribute name. |
optional |
character. Vector of regular expression(s) containing optional formative elements of attribute name. |
verbose |
logical. Produce message output about guesses? Default: |
required |
logical Default: |
Character containing horizon attribute column name. Result is the first match in horizonNames(x)
with the most required plus optional patterns matched.
Andrew G. Brown
# a has the required attr pattern, but none of the optional a <- data.frame(id = 1, top = c(0,10), bottom=c(10,40), clay=c(18,19)) depths(a) <- id ~ top + bottom guessHzAttrName(a, attr="clay", optional=c("total", "_r")) # b has requried attr pattern, and one of the opional patterns # notice that it also contains "clay" but preferentially matches more optional patterns b <- data.frame(id = 1, top = c(0,10), bottom=c(10,40), clay=c(0.18,0.19), clay_r=c(18,19)) depths(b) <- id ~ top + bottom guessHzAttrName(b, attr="clay", optional=c("total", "_r")) # c has total and _r (both optional) on either side of clay # having all of the optional patterns plus required is best evidence, and first # column containing that combination will be returned c <- data.frame(id = 1, top = c(0,10), bottom=c(10,40), totalclay_r=c(18,19), claytotal_r=c(0.18,0.19)) depths(c) <- id ~ top + bottom guessHzAttrName(c, attr="clay", optional=c("total", "_r"))
# a has the required attr pattern, but none of the optional a <- data.frame(id = 1, top = c(0,10), bottom=c(10,40), clay=c(18,19)) depths(a) <- id ~ top + bottom guessHzAttrName(a, attr="clay", optional=c("total", "_r")) # b has requried attr pattern, and one of the opional patterns # notice that it also contains "clay" but preferentially matches more optional patterns b <- data.frame(id = 1, top = c(0,10), bottom=c(10,40), clay=c(0.18,0.19), clay_r=c(18,19)) depths(b) <- id ~ top + bottom guessHzAttrName(b, attr="clay", optional=c("total", "_r")) # c has total and _r (both optional) on either side of clay # having all of the optional patterns plus required is best evidence, and first # column containing that combination will be returned c <- data.frame(id = 1, top = c(0,10), bottom=c(10,40), totalclay_r=c(18,19), claytotal_r=c(0.18,0.19)) depths(c) <- id ~ top + bottom guessHzAttrName(c, attr="clay", optional=c("total", "_r"))
Calculate "melanization" component of "Profile Development Index" after Harden (1982) "A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California". Accepts vectorized inputs for value and reference value to produce vector output. A convenient use case would be to apply this on a profile-specific basis, where the value_ref
has a single value, and value
is a vector of length equal to the number of horizons within the upper 100 cm.
harden.melanization(value, value_ref)
harden.melanization(value, value_ref)
value |
numeric vector containing Munsell values |
value_ref |
A numeric vector containing Munsell value(s) for reference material |
In Harden (1982), "melanization" is calculated relative to a reference parent material for all horizons within 100cm of the soil surface. In addition, several other non-color components are normalized relative to a maximum value and summed to obtain the overall Profile Development Index.
A numeric vector reflecting horizon darkening relative to a reference (e.g. parent) material.
Andrew G. Brown
Harden, J.W. (1982) A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California. Geoderma. 28(1) 1-28. doi: 10.1016/0016-7061(82)90037-4
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) library(aqp) data("jacobs2000", package="aqp") # LEFT JOIN hue, value, chroma matrix color columns horizons(jacobs2000) <- cbind(horizons(jacobs2000)[,c(idname(jacobs2000), hzidname(jacobs2000))], parseMunsell(jacobs2000$matrix_color_munsell, convertColors = FALSE)) # calculate a mixed 150-200cm color ~"parent material" jacobs2000$c_horizon_color <- profileApply(jacobs2000, function(p) { # and derive the parent material from the 150-200cm interval p150_200 <- glom(p, 150, 200, truncate = TRUE) p150_200$thickness <- p150_200$bottom - p150_200$top # mix colors clrs <- na.omit(horizons(p150_200)[,c('matrix_color_munsell','thickness')]) mixMunsell(clrs$matrix_color_munsell, w = clrs$thickness)$munsell }) # segment profile into 1cm slices (for proper depth weighting) jacobs2000$melan <- profileApply(jacobs2000, function(p) { # sum the melanization index over the 0-100cm interval p0_100 <- hz_segment(p, 0:100) ccol <- parseMunsell(p$c_horizon_color, convertColors = FALSE) sum(harden.melanization( value = as.numeric(p0_100$value), value_ref = as.numeric(ccol$value)), na.rm = TRUE) }) jacobs2000$melanorder <- order(jacobs2000$melan) # Plot in order of increasing Melanization index plotSPC(jacobs2000, color = "matrix_color", label = "melan", plot.order = jacobs2000$melanorder, max.depth = 250 ) segments( x0 = 0.5, x1 = length(jacobs2000) + 0.5, y0 = c(0,100,150,200), y1 = c(0,100,150,200), lty = 2 ) # Add [estimated] parent material color swatches lapply(seq_along(jacobs2000$c_horizon_color), function(i) { rect(i - 0.15, 250, i + 0.15, 225, col = parseMunsell(jacobs2000$c_horizon_color[jacobs2000$melanorder[i]])) })
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) library(aqp) data("jacobs2000", package="aqp") # LEFT JOIN hue, value, chroma matrix color columns horizons(jacobs2000) <- cbind(horizons(jacobs2000)[,c(idname(jacobs2000), hzidname(jacobs2000))], parseMunsell(jacobs2000$matrix_color_munsell, convertColors = FALSE)) # calculate a mixed 150-200cm color ~"parent material" jacobs2000$c_horizon_color <- profileApply(jacobs2000, function(p) { # and derive the parent material from the 150-200cm interval p150_200 <- glom(p, 150, 200, truncate = TRUE) p150_200$thickness <- p150_200$bottom - p150_200$top # mix colors clrs <- na.omit(horizons(p150_200)[,c('matrix_color_munsell','thickness')]) mixMunsell(clrs$matrix_color_munsell, w = clrs$thickness)$munsell }) # segment profile into 1cm slices (for proper depth weighting) jacobs2000$melan <- profileApply(jacobs2000, function(p) { # sum the melanization index over the 0-100cm interval p0_100 <- hz_segment(p, 0:100) ccol <- parseMunsell(p$c_horizon_color, convertColors = FALSE) sum(harden.melanization( value = as.numeric(p0_100$value), value_ref = as.numeric(ccol$value)), na.rm = TRUE) }) jacobs2000$melanorder <- order(jacobs2000$melan) # Plot in order of increasing Melanization index plotSPC(jacobs2000, color = "matrix_color", label = "melan", plot.order = jacobs2000$melanorder, max.depth = 250 ) segments( x0 = 0.5, x1 = length(jacobs2000) + 0.5, y0 = c(0,100,150,200), y1 = c(0,100,150,200), lty = 2 ) # Add [estimated] parent material color swatches lapply(seq_along(jacobs2000$c_horizon_color), function(i) { rect(i - 0.15, 250, i + 0.15, 225, col = parseMunsell(jacobs2000$c_horizon_color[jacobs2000$melanorder[i]])) })
Calculate "rubification" component of "Profile Development Index" after Harden (1982) "A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California". Accepts vectorized inputs for hue and chroma to produce vector output.
In Harden (1982) "rubification" is calculated relative to a reference parent material. Several other non-color components are normalized relative to a maximum value and summed to obtain the overall Profile Development Index.
harden.rubification(hue, chroma, hue_ref, chroma_ref)
harden.rubification(hue, chroma, hue_ref, chroma_ref)
hue |
A character vector containing Munsell hues (e.g. "7.5YR") |
chroma |
A numeric vector containing Munsell chromas |
hue_ref |
A character vector containing Munsell hue(s) (e.g. "10YR") for reference material |
chroma_ref |
A numeric vector containing Munsell chroma(s) for reference material |
A numeric vector reflecting horizon redness increase relative to a reference (e.g. parent) material.
Andrew G. Brown
Harden, J.W. (1982) A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California. Geoderma. 28(1) 1-28. doi: 10.1016/0016-7061(82)90037-4
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) library(aqp) data("jacobs2000", package="aqp") # LEFT JOIN hue, value, chroma matrix color columns horizons(jacobs2000) <- cbind(horizons(jacobs2000)[,c(idname(jacobs2000), hzidname(jacobs2000))], parseMunsell(jacobs2000$matrix_color_munsell, convertColors = FALSE)) #' # calculate a mixed 150-200cm color ~"parent material" jacobs2000$c_horizon_color <- profileApply(jacobs2000, function(p) { # and derive the parent material from the 150-200cm interval p150_200 <- glom(p, 150, 200, truncate = TRUE) p150_200$thickness <- p150_200$bottom - p150_200$top # subset colors and thickness clrs <- na.omit(horizons(p150_200)[,c('matrix_color_munsell','thickness')]) # simulate a subtractive mixture using thickness as weight mixMunsell( clrs$matrix_color_munsell, w = clrs$thickness, mixingMethod = 'exact')$munsell }) # segment profile into 1cm slices (for proper depth weighting) jacobs2000$rubif <- profileApply(jacobs2000, function(p) { # sum the melanization index over the 0-100cm interval p0_100 <- hz_segment(p, 0:100) ccol <- parseMunsell(p$c_horizon_color, convertColors = FALSE) sum(harden.rubification( hue = p0_100$hue, chroma = as.numeric(p0_100$chroma), hue_ref = ccol$hue, chroma_ref = as.numeric(ccol$chroma) ), na.rm = TRUE) }) jacobs2000$rubiforder <- order(jacobs2000$rubif) # Plot in order of increasing Rubification index plotSPC(jacobs2000, color = "matrix_color", label = "rubif", plot.order = jacobs2000$rubiforder, max.depth = 250 ) segments( x0 = 0.5, x1 = length(jacobs2000) + 0.5, y0 = c(0,100,150,200), y1 = c(0,100,150,200), lty = 2 ) # Add [estimated] parent material color swatches trash <- sapply(seq_along(jacobs2000$c_horizon_color), function(i) { rect(i - 0.15, 250, i + 0.15, 225, col = parseMunsell(jacobs2000$c_horizon_color[jacobs2000$rubiforder[i]])) })
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) library(aqp) data("jacobs2000", package="aqp") # LEFT JOIN hue, value, chroma matrix color columns horizons(jacobs2000) <- cbind(horizons(jacobs2000)[,c(idname(jacobs2000), hzidname(jacobs2000))], parseMunsell(jacobs2000$matrix_color_munsell, convertColors = FALSE)) #' # calculate a mixed 150-200cm color ~"parent material" jacobs2000$c_horizon_color <- profileApply(jacobs2000, function(p) { # and derive the parent material from the 150-200cm interval p150_200 <- glom(p, 150, 200, truncate = TRUE) p150_200$thickness <- p150_200$bottom - p150_200$top # subset colors and thickness clrs <- na.omit(horizons(p150_200)[,c('matrix_color_munsell','thickness')]) # simulate a subtractive mixture using thickness as weight mixMunsell( clrs$matrix_color_munsell, w = clrs$thickness, mixingMethod = 'exact')$munsell }) # segment profile into 1cm slices (for proper depth weighting) jacobs2000$rubif <- profileApply(jacobs2000, function(p) { # sum the melanization index over the 0-100cm interval p0_100 <- hz_segment(p, 0:100) ccol <- parseMunsell(p$c_horizon_color, convertColors = FALSE) sum(harden.rubification( hue = p0_100$hue, chroma = as.numeric(p0_100$chroma), hue_ref = ccol$hue, chroma_ref = as.numeric(ccol$chroma) ), na.rm = TRUE) }) jacobs2000$rubiforder <- order(jacobs2000$rubif) # Plot in order of increasing Rubification index plotSPC(jacobs2000, color = "matrix_color", label = "rubif", plot.order = jacobs2000$rubiforder, max.depth = 250 ) segments( x0 = 0.5, x1 = length(jacobs2000) + 0.5, y0 = c(0,100,150,200), y1 = c(0,100,150,200), lty = 2 ) # Add [estimated] parent material color swatches trash <- sapply(seq_along(jacobs2000$c_horizon_color), function(i) { rect(i - 0.15, 250, i + 0.15, 225, col = parseMunsell(jacobs2000$c_horizon_color[jacobs2000$rubiforder[i]])) })
It is sometimes convenient to be able to "denormalize" to a SoilProfileCollection
with fewer attributes but more profiles. This is helpful wherever calculations are made on a profile basis and ranges or repeated measures are depicted with multiple attributes per soil horizon.
harmonize
is most commonly used for creating "comparison" soil profile sketches with plotSPC
–where the thematic attribute is derived from multiple data sources or summary statistics (such as quantiles of a property for Low-RV-High). However, the method more generally applies wherever one wants to alias between multiple columns containing "similar" data as input to an algorithm.
Data are "harmonized" to a common attribute names specified by the names of list elements in x.names
. Profiles are essentially duplicated. In order to satisfy uniqueness constraints of the SoilProfileCollection
, the label from the sub-elements of x.names
are used to disambiguate profiles. A new column in the site table is calculated to reflect these groupings and facilitate filtering. See examples below.
## S4 method for signature 'SoilProfileCollection' harmonize(x, x.names, keep.cols = NULL, grp.name = "hgroup")
## S4 method for signature 'SoilProfileCollection' harmonize(x, x.names, keep.cols = NULL, grp.name = "hgroup")
x |
A |
x.names |
a named list of character vectors specifying target names, profile ID suffixes and source attribute names for harmonization |
keep.cols |
a character vector of column names to keep unaltered from the horizon data |
grp.name |
a character vector with column name to store grouping variable in site table (default: "hgroup") |
If attributes reflecting the same or similar property within a soil layer have different names (e.g. socQ05
, socQ50
, socQ95
) it is sometimes inconvenient to work with them as multiple attributes within the same profile. These similar attributes may need to be analyzed together, or in sequence by profile, displayed using the same name or using a common scale. It is also useful to be able to alias different data sources that have the same attributes with different names.
Each list element in x.names
specifies a single "harmonization," which is comprised of one or more mappings from new to old. Each named "sub-element" of x.names
specifies the name and attribute to use for updating the profile ID and site table of the duplicated profiles.
A (redundant) SoilProfileCollection
, with one profile for each set of harmonizations specified by x.names
.
Andrew G. Brown
### single source "harmonization" of single-profile with range -> single attribute, multi-profile # make some test data spc <- combine(lapply(1:10, random_profile, SPC = TRUE)) # assume that p1, p2 and p3 are the low RV and high quantiles for a hypothetical property "foo" h1 <- harmonize(spc, x.names = list(foo = c(q05 = "p1", q50 = "p2", q95 = "p3"))) # inspect result plotSPC(h1, color = "foo") # filter with calculated "harmonized group" to get just RV profiles plotSPC(subset(h1, hgroup == "q50"), color="foo") ### single source, two properties at once; with common labels: "method1" "method2" # assume that p1, p2 are measurements by two (!=) methods for a hypothetical property "foo" # p3, p4 are measurements by same two methods for a hypothetical property "bar" h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"), bar = c(method1 = "p3", method2 = "p4"))) plotSPC(h3, color = "foo") plotSPC(h3, color = "bar") head(horizons(h3)) # a slight modification, "method 1" onlyused for "foo" and "method 3" for "bar" h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"), bar = c(method2 = "p3", method3 = "p4"))) plotSPC(h3, color = "foo") # note the pattern of values missing for foo (*_method3) plotSPC(h3, color = "bar") # likewise for bar (*_method1) #' the new labels need not match across harmonizations -- not sure how useful this is but it works h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"), bar = c(method3 = "p3", method4 = "p4"))) plotSPC(h3, color = "foo") # note the pattern of values missing for foo (*_method 3 + 4) plotSPC(h3, color = "bar") # likewise for bar (*_method 1 + 2) ### two-source harmonization # make test data spc1 <- combine(lapply(LETTERS[1:5], random_profile, SPC = TRUE)) spc2 <- combine(lapply(letters[1:5], random_profile, SPC = TRUE)) h4 <- combine(list(harmonize(spc1, list(foo = c(transect1 = "p4"))), # foo is p4 in dataset 1 harmonize(spc2, list(foo = c(transect2 = "p2"))))) # foo is p2 in dataset 2 # same property with different name in two different datasets plotSPC(h4, color = "foo") ### many source harmonization # make test datasets (n=10); highly redundant IDs (1:3 repeated) spcs <- lapply(1:10, function(x) pbindlist(lapply(1:3, random_profile, SPC = TRUE))) # randomly varying column name for demo (in each dataset, foo could could be p1 thru p5) rcolname <- paste0("p", round(runif(10, 0.5, 5.5))) # iterate over data sources bigspc <- combine(lapply(1:length(spcs), function(i) { # assume each data source has a unique name for the property "foo" xn <- rcolname[i] # set names attribute to be equal to index i [creating unique profile IDs] # i.e. 2_10 will be profile ID 2 from 10th dataset names(xn) <- i # harmonize each data source, using unique column name and target name "foo" harmonize(spcs[[i]], x.names = list(foo = xn)) })) # inspect a subset plotSPC(bigspc[1:30,], color = "foo")
### single source "harmonization" of single-profile with range -> single attribute, multi-profile # make some test data spc <- combine(lapply(1:10, random_profile, SPC = TRUE)) # assume that p1, p2 and p3 are the low RV and high quantiles for a hypothetical property "foo" h1 <- harmonize(spc, x.names = list(foo = c(q05 = "p1", q50 = "p2", q95 = "p3"))) # inspect result plotSPC(h1, color = "foo") # filter with calculated "harmonized group" to get just RV profiles plotSPC(subset(h1, hgroup == "q50"), color="foo") ### single source, two properties at once; with common labels: "method1" "method2" # assume that p1, p2 are measurements by two (!=) methods for a hypothetical property "foo" # p3, p4 are measurements by same two methods for a hypothetical property "bar" h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"), bar = c(method1 = "p3", method2 = "p4"))) plotSPC(h3, color = "foo") plotSPC(h3, color = "bar") head(horizons(h3)) # a slight modification, "method 1" onlyused for "foo" and "method 3" for "bar" h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"), bar = c(method2 = "p3", method3 = "p4"))) plotSPC(h3, color = "foo") # note the pattern of values missing for foo (*_method3) plotSPC(h3, color = "bar") # likewise for bar (*_method1) #' the new labels need not match across harmonizations -- not sure how useful this is but it works h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"), bar = c(method3 = "p3", method4 = "p4"))) plotSPC(h3, color = "foo") # note the pattern of values missing for foo (*_method 3 + 4) plotSPC(h3, color = "bar") # likewise for bar (*_method 1 + 2) ### two-source harmonization # make test data spc1 <- combine(lapply(LETTERS[1:5], random_profile, SPC = TRUE)) spc2 <- combine(lapply(letters[1:5], random_profile, SPC = TRUE)) h4 <- combine(list(harmonize(spc1, list(foo = c(transect1 = "p4"))), # foo is p4 in dataset 1 harmonize(spc2, list(foo = c(transect2 = "p2"))))) # foo is p2 in dataset 2 # same property with different name in two different datasets plotSPC(h4, color = "foo") ### many source harmonization # make test datasets (n=10); highly redundant IDs (1:3 repeated) spcs <- lapply(1:10, function(x) pbindlist(lapply(1:3, random_profile, SPC = TRUE))) # randomly varying column name for demo (in each dataset, foo could could be p1 thru p5) rcolname <- paste0("p", round(runif(10, 0.5, 5.5))) # iterate over data sources bigspc <- combine(lapply(1:length(spcs), function(i) { # assume each data source has a unique name for the property "foo" xn <- rcolname[i] # set names attribute to be equal to index i [creating unique profile IDs] # i.e. 2_10 will be profile ID 2 from 10th dataset names(xn) <- i # harmonize each data source, using unique column name and target name "foo" harmonize(spcs[[i]], x.names = list(foo = xn)) })) # inspect a subset plotSPC(bigspc[1:30,], color = "foo")
hasDarkColors
returns a boolean value by horizon representing whether darkness thresholds are met. The code is fully vectorized and deals with missing data and optional thresholds.
Default arguments are set up for "5-3-3 colors" – the basic criteria for Mollic/Umbric epipedon/mineral soil darkness. Any of the thresholds or column names can be altered. Any thresholds that are set equal to NA
will be ignored.
hasDarkColors( p, d_hue = NA, m_hue = NA, d_value = 5, d_chroma = NA, m_value = 3, m_chroma = 3, dhuenm = "d_hue", dvalnm = "d_value", dchrnm = "d_chroma", mhuenm = "m_hue", mvalnm = "m_value", mchrnm = "m_chroma" )
hasDarkColors( p, d_hue = NA, m_hue = NA, d_value = 5, d_chroma = NA, m_value = 3, m_chroma = 3, dhuenm = "d_hue", dvalnm = "d_value", dchrnm = "d_chroma", mhuenm = "m_hue", mvalnm = "m_value", mchrnm = "m_chroma" )
p |
A SoilProfileCollection. |
d_hue |
Optional: character vector of dry hues to match (default: NA) |
m_hue |
Optional: character vector of moist hues to match (default: NA) |
d_value |
Maximum value of dry value (default: 5) |
d_chroma |
Optional: Maximum value of dry chroma (default: NA) |
m_value |
Maximum value of moist value (default: 3) |
m_chroma |
Maximum value of moist chroma (default: 3) |
dhuenm |
Column name containing dry hue. |
dvalnm |
Column name containing dry value. |
dchrnm |
Column name containing dry chroma. |
mhuenm |
Column name containing moist hue. |
mvalnm |
Column name containing moist value. |
mchrnm |
Column name containing moist chroma. |
Boolean value (for each horizon in p
) reflecting whether "darkness" criteria are met.
Andrew G. Brown
# construct a fake profile spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxeralfs", hzdesgn = c("A","AB","Bt","BCt","R"), hzdept = c(0, 20, 32, 42, 49), hzdepb = c(20, 32, 42, 49, 200), d_value = c(5, 5, 5, 6, NA), m_value = c(2.5, 3, 3, 4, NA), m_chroma = c(2, 3, 4, 4, NA)) # promote to SoilProfileCollection depths(spc) <- id ~ hzdept + hzdepb # print results in table data.frame(id = spc[[idname(spc)]], hz_desgn = spc$hzdesgn, has_dark_colors = hasDarkColors(spc))
# construct a fake profile spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxeralfs", hzdesgn = c("A","AB","Bt","BCt","R"), hzdept = c(0, 20, 32, 42, 49), hzdepb = c(20, 32, 42, 49, 200), d_value = c(5, 5, 5, 6, NA), m_value = c(2.5, 3, 3, 4, NA), m_chroma = c(2, 3, 4, 4, NA)) # promote to SoilProfileCollection depths(spc) <- id ~ hzdept + hzdepb # print results in table data.frame(id = spc[[idname(spc)]], hz_desgn = spc$hzdesgn, has_dark_colors = hasDarkColors(spc))
Calculate basic horizon-level color indices for a SoilProfileCollection. Basic indices do not require aggregation over the whole profile or comparison to a "reference" (e.g. parent material) color. Includes Hurst (1977) Redness Index, Barron-Torrent Redness Index (1986) and Buntley-Westin Index (1965). This is a wrapper method around several horizon-level indices. See the individual functions for more details.
horizonColorIndices(p, hue = "m_hue", value = "m_value", chroma = "m_chroma")
horizonColorIndices(p, hue = "m_hue", value = "m_value", chroma = "m_chroma")
p |
A SoilProfileCollection |
hue |
Column name containing moist hue; default: "m_hue" |
value |
Column name containing moist value; default: "m_value" |
chroma |
Column name containing moist chroma; default: "m_chroma" |
A data.frame containing unique pedon and horizon IDs and horizon-level color indices.
Andrew G. Brown
hurst.redness
barron.torrent.redness.LAB
buntley.westin.index
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) data(sp1) # promote sp1 data to SoilProfileCollection depths(sp1) <- id ~ top + bottom # move site data site(sp1) <- ~ group # use Munsell color notation as horizon name sp1$m <- sprintf("%s %s/%s", sp1$hue, sp1$value, sp1$chroma) # compute indices # merged into `sp1` with left-join on hzidname(sp1) horizons(sp1) <- horizonColorIndices(sp1, hue="hue", value="value", chroma="chroma") # visualize par(mar = c(0, 1, 3, 1)) plotSPC(sp1, color='hurst_redness', name = 'm') plotSPC(sp1, color='barron_torrent_redness', name = 'm') plotSPC(sp1, color='buntley_westin', name = 'm')
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) data(sp1) # promote sp1 data to SoilProfileCollection depths(sp1) <- id ~ top + bottom # move site data site(sp1) <- ~ group # use Munsell color notation as horizon name sp1$m <- sprintf("%s %s/%s", sp1$hue, sp1$value, sp1$chroma) # compute indices # merged into `sp1` with left-join on hzidname(sp1) horizons(sp1) <- horizonColorIndices(sp1, hue="hue", value="value", chroma="chroma") # visualize par(mar = c(0, 1, 3, 1)) plotSPC(sp1, color='hurst_redness', name = 'm') plotSPC(sp1, color='barron_torrent_redness', name = 'm') plotSPC(sp1, color='buntley_westin', name = 'm')
Set column name containing horizon ID
Get column names containing horizon depths
## S4 replacement method for signature 'SoilProfileCollection' horizonDepths(object) <- value ## S4 method for signature 'SoilProfileCollection' horizonDepths(object)
## S4 replacement method for signature 'SoilProfileCollection' horizonDepths(object) <- value ## S4 method for signature 'SoilProfileCollection' horizonDepths(object)
object |
a SoilProfileCollection |
value |
a character vector of length two with names of columns containing numeric top and bottom depths |
Set horizon column names
Get names of columns in horizon table.
## S4 replacement method for signature 'SoilProfileCollection' horizonNames(object) <- value ## S4 method for signature 'SoilProfileCollection' horizonNames(object)
## S4 replacement method for signature 'SoilProfileCollection' horizonNames(object) <- value ## S4 method for signature 'SoilProfileCollection' horizonNames(object)
object |
a SoilProfileCollection |
value |
a unique vector of equal length to number of columns in horizons |
Get horizon data from SoilProfileCollection. Result is returned in the same data.frame
class used to initially construct the SoilProfileCollection.
Horizon data in an object inheriting from data.frame
can easily be added via merge (LEFT JOIN). There must be one or more same-named columns (with at least some matching data) on the left and right hand side to facilitate the join: horizons(spc) <- newdata
## S4 method for signature 'SoilProfileCollection' horizons(object) ## S4 replacement method for signature 'SoilProfileCollection' horizons(object) <- value
## S4 method for signature 'SoilProfileCollection' horizons(object) ## S4 replacement method for signature 'SoilProfileCollection' horizons(object) <- value
object |
A SoilProfileCollection |
value |
An object inheriting |
# load test data data(sp2) # promote to SPC depths(sp2) <- id ~ top + bottom # assign true to surface horizon newdata <- data.frame(top = 0, newvalue = TRUE) # do left join horizons(sp2) <- newdata # inspect site table: newvalue TRUE only for horizons # with top depth equal to zero horizons(sp2)
# load test data data(sp2) # promote to SPC depths(sp2) <- id ~ top + bottom # assign true to surface horizon newdata <- data.frame(top = 0, newvalue = TRUE) # do left join horizons(sp2) <- newdata # inspect site table: newvalue TRUE only for horizons # with top depth equal to zero horizons(sp2)
The 40 Munsell hues are typically arranged from 5R to 2.5R moving clock wise on the unit circle. This function matches a vector of hues to positions on that circle, with options for setting a custom origin or search direction.
This function is fully vectorized.
huePosition( x, returnHues = FALSE, includeNeutral = FALSE, origin = "5R", direction = c("cw", "ccw") )
huePosition( x, returnHues = FALSE, includeNeutral = FALSE, origin = "5R", direction = c("cw", "ccw") )
x |
character vector of hues, e.g. c('10YR', '5YR'), optional if |
returnHues |
logical, should the full set of Munsell hues be returned? See details. |
includeNeutral |
logical, add 'N' to the end of the full set of Munsell hues |
origin |
hue to be used as the starting point for position searches (position 1) |
direction |
indexing direction, should be |
A vector of integer hue positions is returned, of the same
length and order as x
. If returnHues = TRUE
, then all hue
names and ordering are returned and x
is ignored.
D.E. Beaudette
Soil Survey Technical Note 2 wayback machine URL
Munsell book of color. 1976. Macbeth, a Division of Kollmorgen Corp., Baltimore, MD.
colorContrast, huePositionCircle
# get hue ordering for setting levels of a factor huePosition(returnHues = TRUE) # get hue ordering including N (neutral) huePosition(returnHues = TRUE, includeNeutral = TRUE) # get position of the '10YR' hue, relative to standard origin of '5R' # should be 7 huePosition(x = '10YR') # get position of the '10YR' hue, relative to standard origin of '5YR' # should be 3 huePosition(x = '10YR', origin = '5YR') # visualize op <- par(mar = c(0, 0, 0, 0), fg = 'white', bg = 'black') huePositionCircle(huePosition(returnHues = TRUE, origin = '5YR')) par(op)
# get hue ordering for setting levels of a factor huePosition(returnHues = TRUE) # get hue ordering including N (neutral) huePosition(returnHues = TRUE, includeNeutral = TRUE) # get position of the '10YR' hue, relative to standard origin of '5R' # should be 7 huePosition(x = '10YR') # get position of the '10YR' hue, relative to standard origin of '5YR' # should be 3 huePosition(x = '10YR', origin = '5YR') # visualize op <- par(mar = c(0, 0, 0, 0), fg = 'white', bg = 'black') huePositionCircle(huePosition(returnHues = TRUE, origin = '5YR')) par(op)
Munsell hues are arranged on the unit circle with "neutral" at the center.
huePositionCircle( hues = huePosition(returnHues = TRUE), value = 6, chroma = 10, chip.cex = 5.5, label.cex = 0.66, seg.adj = 0.8, seg.col = grey(0.4), plot = TRUE, simulateCVD = NULL, CVDseverity = 1 )
huePositionCircle( hues = huePosition(returnHues = TRUE), value = 6, chroma = 10, chip.cex = 5.5, label.cex = 0.66, seg.adj = 0.8, seg.col = grey(0.4), plot = TRUE, simulateCVD = NULL, CVDseverity = 1 )
hues |
vector of Munsell hues, commonly derived from |
value |
single integer, Munsell value used to create an actual color |
chroma |
single integer, Munsell chroma used to create an actual color |
chip.cex |
numeric, scaling for color chips |
label.cex |
numeric, scaling labels |
seg.adj |
numeric, scaling for line segment cues |
seg.col |
single color, color used for line segment cues |
plot |
logical, generate output on the current graphics device |
simulateCVD |
simulate color vision deficiencies with the colorspace package, should be the character representation of a function name, one of: 'deutan', 'protan', or 'tritan'. |
CVDseverity |
numeric value between 0 (none) and 1 (total), describing the severity of the color vision deficiency |
an invisible data.frame
of data used to create the figure
The best results are obtained when setting margins to zero, and inverting foreground / background colors. For example: par(mar = c(0, 0, 0, 0), fg = 'white', bg = 'black')
.
Munsell book of color. 1976. Macbeth, a Division of Kollmorgen Corp., Baltimore, MD.
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # better graphics defaults op <- par( mar = c(0, 0, 0, 0), fg = 'white', bg = 'black', xpd = NA ) # full set of hues, as generated by huePosition(returnHues = TRUE) huePositionCircle() # just a few hues huePositionCircle(hues = c('5R', '5Y', '5G', '5B', '5P')) # adjust Munsell value and chroma huePositionCircle(value = 3, chroma = 6) # reset graphics state par(op)
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # better graphics defaults op <- par( mar = c(0, 0, 0, 0), fg = 'white', bg = 'black', xpd = NA ) # full set of hues, as generated by huePosition(returnHues = TRUE) huePositionCircle() # just a few hues huePositionCircle(hues = c('5R', '5Y', '5G', '5B', '5P')) # adjust Munsell value and chroma huePositionCircle(value = 3, chroma = 6) # reset graphics state par(op)
Calculate Redness Index after Hurst (1977) "Visual estimation of iron in saprolite" DOI: 10.1130/0016-7606(1977)88<174:VEOIIS>2.0.CO;2. Accepts vectorized inputs for hue, value and chroma, produces vector output.
hurst.redness(hue, value, chroma)
hurst.redness(hue, value, chroma)
hue |
A character vector containing Munsell hues (e.g. "7.5YR") |
value |
A numeric vector containing Munsell values |
chroma |
A numeric vector containing Munsell chromas |
A numeric vector of horizon redness index (lower values = redder).
Andrew G. Brown
Hurst, V.J. (1977) Visual estimation of iron in saprolite. GSA Bulletin. 88(2): 174–176. doi: https://doi.org/10.1130/0016-7606(1977)88<174:VEOIIS>2.0.CO;2
This function dissolves or combines horizons that have a common set of grouping variables. It only combines those horizon records that are sequential (e.g. share a horizon boundary). Thus, it can be used to identify discontinuities in the grouping variables along a profile and their unique depths. It is particularly useful for determining the depth to the top or bottom of horizons with a specific category, and should be simpler than previous methods that require aggregating over profiles.
hz_dissolve( object, by, idcol = "id", depthcols = c("top", "bottom"), collapse = FALSE, order = FALSE ) dissolve_hz( object, by, id = "idcol", hztop = "top", hzbot = "bottom", collapse = FALSE, order = FALSE )
hz_dissolve( object, by, idcol = "id", depthcols = c("top", "bottom"), collapse = FALSE, order = FALSE ) dissolve_hz( object, by, id = "idcol", hztop = "top", hzbot = "bottom", collapse = FALSE, order = FALSE )
object |
a |
by |
character: column names, to be used as grouping variables, within the object. |
idcol |
character: column name of the pedon ID within the object. |
depthcols |
a character vector of length 2 specifying the names of the horizon depths (e.g. |
collapse |
logical: indicating whether to not combine grouping variables before dissolving. |
order |
logical: indicating whether or not to order the object by the id, hztop, and hzbot columns. |
id |
deprecated and replaced with idcol. |
hztop |
deprecated and replaced by depthcols. |
hzbot |
deprecated and replaced by depthcols. |
This function assumes the profiles and horizons within the object follow the logic defined by checkHzDepthLogic
(e.g. records are ordered sequentially by id, hztop, and hzbot and without gaps). If the records are not ordered, set the order = TRUE
.
A data.frame
with the original idcol, by grouping variables, and non-consecutive horizon depths.
Stephen Roecker
hz_lag()
, hz_intersect()
, hz_segment()
, checkHzDepthLogic()
# example 1 data(jacobs2000) spc <- jacobs2000 spc$dep_5 <- spc$depletion_pct >=5 spc$genhz <- generalize.hz(spc$name, c("A", "E", "B", "C"), c("A", "E", "B", "C")) h <- horizons(spc) test <- hz_dissolve(h, by = c("genhz", "dep_5"), idcol = "id", depthcols = c("top", "bottom")) vars <- c("id", "top", "bottom", "genhz", "dep_5") h[h$id == "92-1", vars] test[test$id == "92-1", ] # example 2 df <- data.frame( id = 1, top = c(0, 5, 10, 15, 25, 50), bottom = c(5, 10, 15, 25, 50, 100), hzname = c("A1", "A2", "E/A", "2Bt1", "2Bt2", "2C"), genhz = c("A", "A", "E", "2Bt", "2Bt", "2C"), texcl = c("sil", "sil", "sil", "sl", "sl", "s") ) df hz_dissolve(df, c("genhz", "texcl")) hz_dissolve(df, c("genhz", "texcl"), collapse = TRUE) test <- hz_dissolve(df, "genhz") subset(test, value == "2Bt")
# example 1 data(jacobs2000) spc <- jacobs2000 spc$dep_5 <- spc$depletion_pct >=5 spc$genhz <- generalize.hz(spc$name, c("A", "E", "B", "C"), c("A", "E", "B", "C")) h <- horizons(spc) test <- hz_dissolve(h, by = c("genhz", "dep_5"), idcol = "id", depthcols = c("top", "bottom")) vars <- c("id", "top", "bottom", "genhz", "dep_5") h[h$id == "92-1", vars] test[test$id == "92-1", ] # example 2 df <- data.frame( id = 1, top = c(0, 5, 10, 15, 25, 50), bottom = c(5, 10, 15, 25, 50, 100), hzname = c("A1", "A2", "E/A", "2Bt1", "2Bt2", "2C"), genhz = c("A", "A", "E", "2Bt", "2Bt", "2C"), texcl = c("sil", "sil", "sil", "sl", "sl", "s") ) df hz_dissolve(df, c("genhz", "texcl")) hz_dissolve(df, c("genhz", "texcl"), collapse = TRUE) test <- hz_dissolve(df, "genhz") subset(test, value == "2Bt")
This function intersects two horizon tables by harmonizing their depths and merging them where they overlap. This can be useful to rejoin the results of hz_dissolve()
to it's original horizon table, and then perform an aggregation on the dissolved variables.
hz_intersect(x, y, idcol = "id", depthcols = c("top", "bottom"))
hz_intersect(x, y, idcol = "id", depthcols = c("top", "bottom"))
x |
a |
y |
a |
idcol |
character: column name of the pedon ID within the object. |
depthcols |
a character vector of length 2 specifying the names of the horizon depths (e.g. |
.
A data.frame
with harmonized depth intervals (i.e. segment_id) and columns from both of the original data.frame
. If both data.frame
contain the same column names, they will both be returned (with the exception of the idcol and depthcols), and appended with either x or y to indicate which data.frame
they originated from.
Stephen Roecker
hz_dissolve()
, hz_lag()
, hz_segment()
h <- data.frame( id = 1, top = c(0, 25, 44, 46, 50), bottom = c(25, 44, 46, 50, 100), by = c("Yes", "Yes", "No", "No", "Yes"), clay = c(10, 12, 27, 35, 16) ) hz_dissolve(h, "by") hz_intersect(x = hz_dissolve(h, "by"), y = h) hi <- hz_intersect(x = h, y = hz_dissolve(h, "by")) aggregate(clay ~ dissolve_id, data = hi, mean)
h <- data.frame( id = 1, top = c(0, 25, 44, 46, 50), bottom = c(25, 44, 46, 50, 100), by = c("Yes", "Yes", "No", "No", "Yes"), clay = c(10, 12, 27, 35, 16) ) hz_dissolve(h, "by") hz_intersect(x = hz_dissolve(h, "by"), y = h) hi <- hz_intersect(x = h, y = hz_dissolve(h, "by")) aggregate(clay ~ dissolve_id, data = hi, mean)
This function finds adjacent values to a horizon values at lagged distances.
hz_lag( object, lag = 1, unit = "index", idcol = "id", depthcols = c("top", "bottom"), order = FALSE )
hz_lag( object, lag = 1, unit = "index", idcol = "id", depthcols = c("top", "bottom"), order = FALSE )
object |
a |
lag |
integer: number of horizons to lag |
unit |
character: lag units in index or depth. |
idcol |
character: column name of the pedon ID within the object. |
depthcols |
a character vector of length 2 specifying the names of the horizon depths (e.g. |
order |
logical: indicating whether or not to order the #' |
.
A data.frame
with lagged values.
Stephen Roecker
hz_dissolve()
, hz_intersect()
, hz_segment()
h <- data.frame( id = 1, top = c(0, 25, 44, 46, 50), bottom = c(25, 44, 46, 50, 100), texcl = c("SL", "SL", "CL", "CL", "L"), clay = c(10, 12, 27, 35, 16) ) hz_lag(h) hz_lag(h, -1) hz_lag(h, 10:15, unit = "depth") transform(cbind(h, lag = hz_lag(h)), clay_dif = lag.clay_bot.1 - clay, texcl_contrast = paste0(texcl, "-", lag.texcl_bot.1) )
h <- data.frame( id = 1, top = c(0, 25, 44, 46, 50), bottom = c(25, 44, 46, 50, 100), texcl = c("SL", "SL", "CL", "CL", "L"), clay = c(10, 12, 27, 35, 16) ) hz_lag(h) hz_lag(h, -1) hz_lag(h, 10:15, unit = "depth") transform(cbind(h, lag = hz_lag(h)), clay_dif = lag.clay_bot.1 - clay, texcl_contrast = paste0(texcl, "-", lag.texcl_bot.1) )
This function segments or subdivides horizon data from a SoilProfileCollection
or data.frame
by depth interval (e.g. c(0, 10)
, c(0, 50)
, or 25:100
). This results in horizon records being split at the specified depth intervals, which duplicates the original horizon data but also adds new horizon depths. In addition, labels (i.e. "segment_id"
) are added to each horizon record that correspond with their depth interval (e.g. 025-100
). This function is intended to harmonize horizons to a common support (i.e. depth interval) for further aggregation or summary. See the examples.
hz_segment(object, intervals, trim = TRUE, depthcols = c("top", "bottom")) segment(object, intervals, trim = TRUE, hzdepcols = c("top", "bottom"))
hz_segment(object, intervals, trim = TRUE, depthcols = c("top", "bottom")) segment(object, intervals, trim = TRUE, hzdepcols = c("top", "bottom"))
object |
either a |
intervals |
a vector of integers over which to slice the horizon data (e.g. |
trim |
logical, when |
depthcols |
a character vector of length 2 specifying the names of the horizon depths (e.g. |
hzdepcols |
deprecated being replaced by depthcols. |
hz_segment()
performs no aggregation or resampling of the source data, rather, labels are added to horizon records for subsequent aggregation or summary. This makes it possible to process a very large number of records outside of the constraints associated with e.g. slice()
or slab()
.
Either a SoilProfileCollection
or data.frame
with the original horizon data segmented by depth intervals. There are usually more records in the resulting object, one for each time a segment interval partially overlaps with a horizon. A new column called segment_id
identifying the depth interval is added.
Stephen Roecker
dice()
, glom()
, hz_dissolve()
, hz_lag()
, hz_intersect()
# example data data(sp1) # upgrade to SPC depths(sp1) <- id ~ top + bottom # segment and trim z <- hz_segment(sp1, intervals = c(0, 10, 20, 30), trim = TRUE) # display segment labels # note that there are new horizon boundaries at segments par(mar = c(0, 0, 3, 1)) plotSPC(z, color = 'segment_id', width = 0.3) # highlight new horizon records par(mar = c(0, 0, 2, 1)) plotSPC(z, color = NA, default.color = NA, width = 0.3, lwd = 1) plotSPC(sp1, color = NA, default.color = NA, width = 0.3, lwd = 3, add = TRUE, name = NA, print.id = FALSE) legend('top', horiz = TRUE, legend = c('original', 'segmented'), lwd = c(1, 3), cex = 0.85, bty = 'n') # same results as slab() # 10 random profiles s <- lapply(1:10, random_profile, n_prop = 1, SPC = TRUE, method = 'random_walk') s <- combine(s) a.slab <- slab(s, fm = ~ p1, slab.structure = c(0, 10, 20, 30), slab.fun = mean, na.rm = TRUE) z <- hz_segment(s, intervals = c(0, 10, 20, 30), trim = TRUE) z <- horizons(z) z$thick <- z$bottom - z$top a.segment <- sapply(split(z, z$segment_id), function(i) { weighted.mean(i$p1, i$thick) }) res <- data.frame( slab = a.slab$value, segment = a.segment, diff = a.slab$value - a.segment ) print(res) res$diff < 0.001 data(sp5) # segment by upper 25-cm test1 <- hz_segment(sp5, intervals = c(0, 100)) print(test1) nrow(test1) print(object.size(test1), units = "Mb") # segment by 1-cm increments test2 <- hz_segment(sp5, intervals = 0:100) print(test2) nrow(test2) print(object.size(test2), units = "Mb") # segment and aggregate test3 <- hz_segment(horizons(sp5), intervals = c(0, 5, 15, 30, 60, 100, 200), depthcols = c("top", "bottom") ) test3$hzthk <- test3$bottom - test3$top test3_agg <- by(test3, test3$segment_id, function(x) { data.frame( hzID = x$hzID[1], segment_id = x$segment_id[1], average = weighted.mean(x$clay, w = x$hzthk) ) }) test3_agg <- do.call("rbind", test3_agg) head(test3_agg)
# example data data(sp1) # upgrade to SPC depths(sp1) <- id ~ top + bottom # segment and trim z <- hz_segment(sp1, intervals = c(0, 10, 20, 30), trim = TRUE) # display segment labels # note that there are new horizon boundaries at segments par(mar = c(0, 0, 3, 1)) plotSPC(z, color = 'segment_id', width = 0.3) # highlight new horizon records par(mar = c(0, 0, 2, 1)) plotSPC(z, color = NA, default.color = NA, width = 0.3, lwd = 1) plotSPC(sp1, color = NA, default.color = NA, width = 0.3, lwd = 3, add = TRUE, name = NA, print.id = FALSE) legend('top', horiz = TRUE, legend = c('original', 'segmented'), lwd = c(1, 3), cex = 0.85, bty = 'n') # same results as slab() # 10 random profiles s <- lapply(1:10, random_profile, n_prop = 1, SPC = TRUE, method = 'random_walk') s <- combine(s) a.slab <- slab(s, fm = ~ p1, slab.structure = c(0, 10, 20, 30), slab.fun = mean, na.rm = TRUE) z <- hz_segment(s, intervals = c(0, 10, 20, 30), trim = TRUE) z <- horizons(z) z$thick <- z$bottom - z$top a.segment <- sapply(split(z, z$segment_id), function(i) { weighted.mean(i$p1, i$thick) }) res <- data.frame( slab = a.slab$value, segment = a.segment, diff = a.slab$value - a.segment ) print(res) res$diff < 0.001 data(sp5) # segment by upper 25-cm test1 <- hz_segment(sp5, intervals = c(0, 100)) print(test1) nrow(test1) print(object.size(test1), units = "Mb") # segment by 1-cm increments test2 <- hz_segment(sp5, intervals = 0:100) print(test2) nrow(test2) print(object.size(test2), units = "Mb") # segment and aggregate test3 <- hz_segment(horizons(sp5), intervals = c(0, 5, 15, 30, 60, 100, 200), depthcols = c("top", "bottom") ) test3$hzthk <- test3$bottom - test3$top test3_agg <- by(test3, test3$segment_id, function(x) { data.frame( hzID = x$hzID[1], segment_id = x$segment_id[1], average = weighted.mean(x$clay, w = x$hzthk) ) }) test3_agg <- do.call("rbind", test3_agg) head(test3_agg)
This function aggregates information in the horizon table and allocates it to the particle size class for the control section.
hz_to_taxpartsize( x, y, taxpartsize = "taxpartsize", clay = "clay", idcol = "id", depthcols = c("top", "bottom") )
hz_to_taxpartsize( x, y, taxpartsize = "taxpartsize", clay = "clay", idcol = "id", depthcols = c("top", "bottom") )
x |
a |
y |
a |
taxpartsize |
|
clay |
|
idcol |
character: column name of the pedon ID within the object. |
depthcols |
a character vector of length 2 specifying the names of the horizon depths (e.g. |
This function differs from texture_to_taxpartsize
in that is aggregates the results of texture_to_taxpartsize
, and accounts for strongly contrasting particle size classes.
A data.frame
object containing the original idcol, the aggregated particle size control section allocation, and an aniso column to indicate more than one contrasting class.
Stephen Roecker
texture_to_taxpartsize()
, lookup_taxpartsize()
h <- data.frame( id = 1, hzname = c("A", "BA", "Bw", "BC", "C"), top = c(0, 10, 45, 60, 90), bottom = c(10, 45, 60, 90, 150), clay = c(15, 16, 45, 20, 10), sand = c(10, 35, 40, 50, 90), frags = c(0, 5, 10, 38, 40) ) h <- cbind(h, texcl = ssc_to_texcl(clay = h$clay, sand = h$sand)) pscs <- data.frame(id = 1, top = 25, bottom = 100) h <- cbind(h, taxpartsize = texture_to_taxpartsize( texcl = h$texcl, clay = h$clay, sand = h$sand, fragvoltot = h$frags )) depths(h) <- id ~ top + bottom # set required metadata for estimatePSCS() hzdesgnname(h) <- "hzname" hztexclname(h) <- "texcl" hzmetaname(h, "clay") <- "clay" pscs <- data.frame(id = h$id, rbind(estimatePSCS(h))) names(pscs)[2:3] <- c("top", "bottom") hz_to_taxpartsize(horizons(h), pscs)
h <- data.frame( id = 1, hzname = c("A", "BA", "Bw", "BC", "C"), top = c(0, 10, 45, 60, 90), bottom = c(10, 45, 60, 90, 150), clay = c(15, 16, 45, 20, 10), sand = c(10, 35, 40, 50, 90), frags = c(0, 5, 10, 38, 40) ) h <- cbind(h, texcl = ssc_to_texcl(clay = h$clay, sand = h$sand)) pscs <- data.frame(id = 1, top = 25, bottom = 100) h <- cbind(h, taxpartsize = texture_to_taxpartsize( texcl = h$texcl, clay = h$clay, sand = h$sand, fragvoltot = h$frags )) depths(h) <- id ~ top + bottom # set required metadata for estimatePSCS() hzdesgnname(h) <- "hzname" hztexclname(h) <- "texcl" hzmetaname(h, "clay") <- "clay" pscs <- data.frame(id = h$id, rbind(estimatePSCS(h))) names(pscs)[2:3] <- c("top", "bottom") hz_to_taxpartsize(horizons(h), pscs)
Horizons Above or Below
hzAbove(x, ..., offset = 1, SPC = TRUE, simplify = SPC) hzBelow(x, ..., offset = 1, SPC = TRUE, simplify = SPC) hzOffset(x, hzid, offset, SPC = FALSE, simplify = TRUE)
hzAbove(x, ..., offset = 1, SPC = TRUE, simplify = SPC) hzBelow(x, ..., offset = 1, SPC = TRUE, simplify = SPC) hzOffset(x, hzid, offset, SPC = FALSE, simplify = TRUE)
x |
A SoilProfileCollection |
... |
Comma-separated set of R expressions that evaluate as |
offset |
Integer offset in terms of SoilProfileCollection |
SPC |
Return a SoilProfileCollection? Default |
simplify |
If |
hzid |
A vector of target horizon IDs. These are calculated from |
To minimize likelihood of issues with non-standard evaluation context, especially when using hzAbove()
/hzBelow()
inside another function, all expressions used in ...
should be in terms of variables that are in the horizon data frame.
A SoilProfileCollection (when SPC = TRUE
) or a vector of horizon row indices (when SPC = FALSE
and simplify = TRUE
) or a list (when SPC = FALSE
and simplify = FALSE
))
data(sp4) depths(sp4) <- id ~ top + bottom # get the horizon above the last horizon (j-index of bottom horizon minus 1) hzAbove(sp4, hzID(sp4) %in% getLastHorizonID(sp4)) # get horizons below the last horizon (none; j-index of bottom horizon plus 1) hzBelow(sp4, hzID(sp4) %in% getLastHorizonID(sp4))
data(sp4) depths(sp4) <- id ~ top + bottom # get the horizon above the last horizon (j-index of bottom horizon minus 1) hzAbove(sp4, hzID(sp4) %in% getLastHorizonID(sp4)) # get horizons below the last horizon (none; j-index of bottom horizon plus 1) hzBelow(sp4, hzID(sp4) %in% getLastHorizonID(sp4))
SoilProfileCollection
Objects or Horizons via checkHzDepthLogic
This function removes profiles or horizons from a SoilProfileCollection
that are flagged as having invalid horizon depth logic by checkHzDepthLogic
. Invalid profiles may be created when setting byhz = TRUE
; use caution as some functions may not work properly in the presence of gaps. Consider using fillHzGaps
to fill these gaps.
HzDepthLogicSubset(x, byhz = FALSE)
HzDepthLogicSubset(x, byhz = FALSE)
x |
a |
byhz |
logical, evaluate horizon depth logic at the horizon level (profile level if |
a SoilProfileCollection
object
This function cannot identify (and remove) overlapping horizons when byhz = TRUE
.
Function used internally by checkHzDepthLogic()
, glom()
and various other functions that operate on horizon data from single soil profiles and require a priori depth logic checks. Checks for bottom depths less than top depth / bad top depth order ("depthLogic"), bottom depths equal to top depth ("sameDepth"), overlaps/gaps ("overlapOrGap") and missing depths ("missingDepth"). Use names(res)[res]
on result res
of hzDepthTest()
to to determine type of logic error(s) found – see examples below.
hzDepthTests(top, bottom = NULL)
hzDepthTests(top, bottom = NULL)
top |
A numeric vector containing horizon top depths. Or a |
bottom |
A numeric vector containing horizon bottom depths. |
A named logical vector containing TRUE for each type of horizon logic error found in the given data.
Andrew G. Brown & Dylan E. Beaudette
# no logic errors res <- hzDepthTests(top = c(0,10,20,30), bottom = c(10,20,30,50)) names(res)[res] # bottom < top hzDepthTests(top = c(10,20,30,50), bottom = c(0,10,20,30)) names(res)[res] # bottom == top hzDepthTests(top = c(10,20,30,50), bottom = c(0,20,20,30)) names(res)[res] # overlap hzDepthTests(top = c(0,5,20,30), bottom = c(10,20,30,50)) names(res)[res] # gap hzDepthTests(top = c(0,15,20,30), bottom = c(10,20,30,50)) names(res)[res] # missing hzDepthTests(c(0,15,NA,30),c(10,NA,30,50)) names(res)[res]
# no logic errors res <- hzDepthTests(top = c(0,10,20,30), bottom = c(10,20,30,50)) names(res)[res] # bottom < top hzDepthTests(top = c(10,20,30,50), bottom = c(0,10,20,30)) names(res)[res] # bottom == top hzDepthTests(top = c(10,20,30,50), bottom = c(0,20,20,30)) names(res)[res] # overlap hzDepthTests(top = c(0,5,20,30), bottom = c(10,20,30,50)) names(res)[res] # gap hzDepthTests(top = c(0,15,20,30), bottom = c(10,20,30,50)) names(res)[res] # missing hzDepthTests(c(0,15,NA,30),c(10,NA,30,50)) names(res)[res]
Get horizon designation names
## S4 method for signature 'SoilProfileCollection' hzDesgn(object)
## S4 method for signature 'SoilProfileCollection' hzDesgn(object)
object |
a SoilProfileCollection |
hzdesgnname()
: Get column name containing horizon designations
hzdesgnname<-
: Set horizon designation column name
## S4 method for signature 'SoilProfileCollection' hzdesgnname(object, required = FALSE) ## S4 replacement method for signature 'SoilProfileCollection' hzdesgnname(object, required = FALSE) <- value
## S4 method for signature 'SoilProfileCollection' hzdesgnname(object, required = FALSE) ## S4 replacement method for signature 'SoilProfileCollection' hzdesgnname(object, required = FALSE) <- value
object |
a SoilProfileCollection |
required |
logical, is this attribute required? If it is, set to |
value |
character, name of column containing horizon designations |
Store the column name containing horizon designations or other identifiers in the metadata slot of the SoilProfileCollection.
data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # set horizon designation column hzdesgnname(sp1) <- "name" # get horizon designation column hzdesgnname(sp1)
data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # set horizon designation column hzdesgnname(sp1) <- "name" # get horizon designation column hzdesgnname(sp1)
This function will convert USDA-NCSS horizon boundary distinctness codes into vertical (+/-) offsets in cm, based on the Field Book for Describing and Sampling Soils, version 3.0.
hzDistinctnessCodeToOffset( x, codes = c("very abrupt", "abrupt", "clear", "gradual", "diffuse"), offset = c(0.5, 2, 5, 15, 20)/2 )
hzDistinctnessCodeToOffset( x, codes = c("very abrupt", "abrupt", "clear", "gradual", "diffuse"), offset = c(0.5, 2, 5, 15, 20)/2 )
x |
vector of boundary distinctness codes to be converted |
codes |
character vector of distinctness terms ('clear') or codes ('C'), case insensitive, see details |
offset |
vertical offset factors (cm), approximating 1/2 of the transitional zone thickness, see details |
The default offsets are based on the high-end of ranges presented in "transitional zone thickness criteria" from the Field Book version 3.0 (page 2-6). Offsets are returned as 1/2 of the transitional zone thickness so that horizon boundaries can be adjusted up/down from horizon depths. See plotSPC
, specifically the hz.distinctness.offset
argument for visualization ideas. Missing data in x
(NA) or codes that are not defined in codes
are returned as 0 offsets.
Either format (or mixture) are accepted, case insensitive:
terms: c('very abrupt', 'abrupt', 'clear', 'gradual', 'diffuse')
coded values: c('v', 'a', 'c', 'g', d')
Additional examples are available in the Visualization of Horizon Boundaries tutorial.
vector of offsets with same length as x
D.E. Beaudette
Field Book for Describing and Sampling Soils, version 3.0
# example data data(sp1) # compute 1/2 transitional zone thickness from distinctness codes sp1$hzdo <- hzDistinctnessCodeToOffset(sp1$bound_distinct) # convert colors from Munsell to hex-encoded RGB sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom hzdesgnname(sp1) <- 'name' # adjust margins op <- par(mar=c(0,0,0,1.5)) # sketches, adjust width, adjust text size, include coded hz distinctness offsets plotSPC(sp1, width=0.3, cex.names=0.75, hz.distinctness.offset = 'hzdo') # clean-up par(op)
# example data data(sp1) # compute 1/2 transitional zone thickness from distinctness codes sp1$hzdo <- hzDistinctnessCodeToOffset(sp1$bound_distinct) # convert colors from Munsell to hex-encoded RGB sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom hzdesgnname(sp1) <- 'name' # adjust margins op <- par(mar=c(0,0,0,1.5)) # sketches, adjust width, adjust text size, include coded hz distinctness offsets plotSPC(sp1, width=0.3, cex.names=0.75, hz.distinctness.offset = 'hzdo') # clean-up par(op)
Set vector containing horizon IDs
Get vector containing horizon IDs
## S4 replacement method for signature 'SoilProfileCollection' hzID(object) <- value ## S4 method for signature 'SoilProfileCollection' hzID(object)
## S4 replacement method for signature 'SoilProfileCollection' hzID(object) <- value ## S4 method for signature 'SoilProfileCollection' hzID(object)
object |
a SoilProfileCollection |
value |
a unique vector of equal length to number of horizons |
Set unique horizon ID column name
Get column name containing unique horizon ID
## S4 replacement method for signature 'SoilProfileCollection' hzidname(object) <- value ## S4 method for signature 'SoilProfileCollection' hzidname(object)
## S4 replacement method for signature 'SoilProfileCollection' hzidname(object) <- value ## S4 method for signature 'SoilProfileCollection' hzidname(object)
object |
a SoilProfileCollection |
value |
character, column name containing unique horizon ID values |
data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # create new horizon ID sp1$hzIDrev <- rev(sp1$hzID) # set horizon designation column hzidname(sp1) <- "hzIDrev" # get horizon designation column hzidname(sp1)
data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # create new horizon ID sp1$hzIDrev <- rev(sp1$hzID) # set horizon designation column hzidname(sp1) <- "hzIDrev" # get horizon designation column hzidname(sp1)
Get idname(object)
and hzidname(object)
, with hzdesgnname(object)
, hztexclname(object)
(if defined)
## S4 method for signature 'SoilProfileCollection' hzMetadata(object)
## S4 method for signature 'SoilProfileCollection' hzMetadata(object)
object |
a SoilProfileCollection |
hzmetaname()
: Get column name containing horizon data of interest
hzmetaname<-
: Set horizon designation column name
## S4 method for signature 'SoilProfileCollection' hzmetaname(object, attr, required = FALSE) ## S4 replacement method for signature 'SoilProfileCollection' hzmetaname(object, attr, required = FALSE) <- value
## S4 method for signature 'SoilProfileCollection' hzmetaname(object, attr, required = FALSE) ## S4 replacement method for signature 'SoilProfileCollection' hzmetaname(object, attr, required = FALSE) <- value
object |
A SoilProfileCollection |
attr |
character. Base name for attribute to be stored in metadata. This is prefixed with |
required |
logical. Is this attribute required? If it is, set to |
value |
character. Name of horizon-level column containing data corresponding to |
Store the column name containing a specific type of horizon data in the metadata slot of the SoilProfileCollection.
data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # set important metadata columns hzdesgnname(sp1) <- "name" hztexclname(sp1) <- "texture" # set custom horizon property (clay content) column hzmetaname(sp1, "clay") <- "prop" # inspect metadata list metadata(sp1) # get horizon clay content column hzmetaname(sp1, "clay") # uses hzdesgname(), hztexclname(), hzmetaname(attr="clay") in function definition estimatePSCS(sp1)
data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # set important metadata columns hzdesgnname(sp1) <- "name" hztexclname(sp1) <- "texture" # set custom horizon property (clay content) column hzmetaname(sp1, "clay") <- "prop" # inspect metadata list metadata(sp1) # get horizon clay content column hzmetaname(sp1, "clay") # uses hzdesgname(), hztexclname(), hzmetaname(attr="clay") in function definition estimatePSCS(sp1)
hztexclname()
: Get column name containing horizon designation name
hztexclname<-
: Set horizon texture class column name for a SoilProfileCollection
## S4 method for signature 'SoilProfileCollection' hztexclname(object, required = FALSE) ## S4 replacement method for signature 'SoilProfileCollection' hztexclname(object, required = FALSE) <- value
## S4 method for signature 'SoilProfileCollection' hztexclname(object, required = FALSE) ## S4 replacement method for signature 'SoilProfileCollection' hztexclname(object, required = FALSE) <- value
object |
a SoilProfileCollection |
required |
logical, is this attribute required? If it is, set to |
value |
character, name of column containing horizon texture classes |
Store the column name containing horizon texture classes or other identifiers in the metadata slot of the SoilProfileCollection.
data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # set horizon texture class column hztexclname(sp1) <- "texture" # get horizon texture class column hztexclname(sp1)
data(sp1) # promote to SPC depths(sp1) <- id ~ top + bottom # set horizon texture class column hztexclname(sp1) <- "texture" # get horizon texture class column hztexclname(sp1)
This function will convert USDA-NCSS horizon boundary topography codes into line types, based on the Field Book for Describing and Sampling Soils, version 3.0.
hzTopographyCodeToLineType( x, codes = c("smooth", "wavy", "irregular", "broken"), lty = c(1, 2, 3, 4) )
hzTopographyCodeToLineType( x, codes = c("smooth", "wavy", "irregular", "broken"), lty = c(1, 2, 3, 4) )
x |
vector of boundary topography codes to be converted |
codes |
character vector of topography terms ('smooth') or codes ('S'), case insensitive, see details |
lty |
line types |
Visualization of horizon boundary topography can be difficult, line type offers an additional visual cue. See hzTopographyCodeToOffset
for an offset-based approach. Additional examples are available in the Visualization of Horizon Boundaries tutorial. Missing data in x
(NA) or codes that are not defined in codes
are returned as line type 1.
Either format (or mixture) are accepted, case insensitive:
terms: c('smooth', 'wavy', 'irregular', 'broken')
coded values: c('s', 'w', 'i', 'b')
vector of line types with same length as x
D.E. Beaudette
Field Book for Describing and Sampling Soils, version 3.0
plotSPC, hzTopographyCodeToOffset
This function will convert USDA-NCSS horizon boundary topography codes into a vertical offset, suitable for use in plotSPC
. Default values are reasonable starting points for encoding smooth, wavy, irregular, or broken style horizon boundary topography as defined in Field Book for Describing and Sampling Soils, version 3.0.
hzTopographyCodeToOffset( x, codes = c("smooth", "wavy", "irregular", "broken"), offset = c(0, 4, 8, 12) )
hzTopographyCodeToOffset( x, codes = c("smooth", "wavy", "irregular", "broken"), offset = c(0, 4, 8, 12) )
x |
vector of boundary topography codes to be converted |
codes |
character vector of topography terms ('smooth') or codes ('S'), case insensitive, see details |
offset |
vertical offset (depth units) used to create "chevron" effect |
Additional examples are available in the Visualization of Horizon Boundaries tutorial. Missing data in x
(NA) or codes that are not defined in codes
are returned with an offset of 0.
Either format (or mixture) are accepted, case insensitive:
terms: c('smooth', 'wavy', 'irregular', 'broken')
coded values: c('s', 'w', 'i', 'b')
vector of vertical offsets with same length as x
D.E. Beaudette
Field Book for Describing and Sampling Soils, version 3.0
Functions for creating and working with horizon (sequence) transition probability matrices.
See the following tutorials for some ideas:
hzTransitionProbabilities( x, name = GHL(x, required = TRUE), loopTerminalStates = FALSE ) mostLikelyHzSequence(mc, t0, maxIterations = 10)
hzTransitionProbabilities( x, name = GHL(x, required = TRUE), loopTerminalStates = FALSE ) mostLikelyHzSequence(mc, t0, maxIterations = 10)
x |
a |
name |
A horizon level attribute in |
loopTerminalStates |
should terminal states loop back to themselves? This is useful when the transition probability matrix will be used to
initialize a |
mc |
Passed to |
t0 |
Passed to |
maxIterations |
Maximum number of iterations. Default: |
A square matrix of transition probabilities. See examples.
The function genhzTableToAdjMat()
returns a square adjacency matrix.
See examples.
The function mostLikelyHzSequence()
returns the most likely sequence of
horizons, given a markovchain
object initialized from horizon
transition probabilities and an initial state, t0
. See examples.
These functions are still experimental and subject to change.
D.E. Beaudette
data(sp4) depths(sp4) <- id ~ top + bottom # horizon transition probabilities: row -> col transitions (tp <- hzTransitionProbabilities(sp4, 'name')) ## Not run: ## plot TP matrix with functions from sharpshootR package library(sharpshootR) par(mar=c(0,0,0,0), mfcol=c(1,2)) plotSPC(sp4, name = 'name', name.style = 'center-center') plotSoilRelationGraph(tp, graph.mode = 'directed', edge.arrow.size=0.5) ## demonstrate genhzTableToAdjMat usage data(loafercreek, package='soilDB') # convert contingency table -> adj matrix / TP matrix tab <- table(loafercreek$hzname, loafercreek$genhz) m <- genhzTableToAdjMat(tab) # plot par(mar=c(0,0,0,0), mfcol=c(1,1)) plotSoilRelationGraph(m, graph.mode = 'directed', edge.arrow.size=0.5) ## demonstrate markovchain integration library(markovchain) tp.loops <- hzTransitionProbabilities(sp4, 'name', loopTerminalStates = TRUE) # init new markovchain from TP matrix mc <- new("markovchain", states=dimnames(tp.loops)[[1]], transitionMatrix = tp.loops) # simple plot plot(mc, edge.arrow.size=0.5) # check absorbing states absorbingStates(mc) # steady-state: steadyStates(mc) ## End(Not run)
data(sp4) depths(sp4) <- id ~ top + bottom # horizon transition probabilities: row -> col transitions (tp <- hzTransitionProbabilities(sp4, 'name')) ## Not run: ## plot TP matrix with functions from sharpshootR package library(sharpshootR) par(mar=c(0,0,0,0), mfcol=c(1,2)) plotSPC(sp4, name = 'name', name.style = 'center-center') plotSoilRelationGraph(tp, graph.mode = 'directed', edge.arrow.size=0.5) ## demonstrate genhzTableToAdjMat usage data(loafercreek, package='soilDB') # convert contingency table -> adj matrix / TP matrix tab <- table(loafercreek$hzname, loafercreek$genhz) m <- genhzTableToAdjMat(tab) # plot par(mar=c(0,0,0,0), mfcol=c(1,1)) plotSoilRelationGraph(m, graph.mode = 'directed', edge.arrow.size=0.5) ## demonstrate markovchain integration library(markovchain) tp.loops <- hzTransitionProbabilities(sp4, 'name', loopTerminalStates = TRUE) # init new markovchain from TP matrix mc <- new("markovchain", states=dimnames(tp.loops)[[1]], transitionMatrix = tp.loops) # simple plot plot(mc, edge.arrow.size=0.5) # check absorbing states absorbingStates(mc) # steady-state: steadyStates(mc) ## End(Not run)
Get column name containing unique profile IDs
## S4 method for signature 'SoilProfileCollection' idname(object)
## S4 method for signature 'SoilProfileCollection' idname(object)
object |
a SoilProfileCollection |
initSpatial()<-
: Set the column names containing spatial data and the corresponding coordinate reference system for a SoilProfileCollection.
getSpatial()
: Get spatial data associated with a SoilProfileCollection
## S4 replacement method for signature 'SoilProfileCollection,ANY,ANY' initSpatial(object, crs = NULL) <- value ## S4 replacement method for signature 'SoilProfileCollection,ANY,character' initSpatial(object, crs = NULL) <- value ## S4 method for signature 'SoilProfileCollection' getSpatial(object) ## S4 method for signature 'SoilProfileCollection' coordinates(obj) ## S4 replacement method for signature 'SoilProfileCollection,ANY' coordinates(object) <- value ## S4 replacement method for signature 'SoilProfileCollection,character' coordinates(object) <- value
## S4 replacement method for signature 'SoilProfileCollection,ANY,ANY' initSpatial(object, crs = NULL) <- value ## S4 replacement method for signature 'SoilProfileCollection,ANY,character' initSpatial(object, crs = NULL) <- value ## S4 method for signature 'SoilProfileCollection' getSpatial(object) ## S4 method for signature 'SoilProfileCollection' coordinates(obj) ## S4 replacement method for signature 'SoilProfileCollection,ANY' coordinates(object) <- value ## S4 replacement method for signature 'SoilProfileCollection,character' coordinates(object) <- value
object |
A SoilProfileCollection |
crs |
Optional: character. Representation of Coordinate Reference System as |
value |
A formula specifying names of columns containing geometry (x and y coordinates), or character with the column names |
obj |
A SoilProfileCollection |
data(sp5) # coordinates are stored in x and y column of site sp5$x <- rnorm(length(sp5)) sp5$y <- rnorm(length(sp5)) # coordinates takes a formula object as input initSpatial(sp5) <- ~ x + y # optionally specify Coordinate Reference System (crs) on left-hand side initSpatial(sp5, crs = "OGC:CRS84") <- ~ x + y
data(sp5) # coordinates are stored in x and y column of site sp5$x <- rnorm(length(sp5)) sp5$y <- rnorm(length(sp5)) # coordinates takes a formula object as input initSpatial(sp5) <- ~ x + y # optionally specify Coordinate Reference System (crs) on left-hand side initSpatial(sp5, crs = "OGC:CRS84") <- ~ x + y
Generate a vector of white or black label colors conditioned on a vector of colors to maximize label contrast.
invertLabelColor(colors, threshold = 0.65)
invertLabelColor(colors, threshold = 0.65)
colors |
vector of colors |
threshold |
black | white threshold |
vector of label colors
D.E. Beaudette
# test with shades of grey s <- seq(0, 1, by = 0.05) cols <- grey(s) soilPalette(cols, lab = as.character(s)) # test with 10YR x/3 m <- sprintf('10YR %s/3', 1:8) cols <- parseMunsell(m) soilPalette(cols, lab = m)
# test with shades of grey s <- seq(0, 1, by = 0.05) cols <- grey(s) soilPalette(cols, lab = as.character(s)) # test with 10YR x/3 m <- sprintf('10YR %s/3', 1:8) cols <- parseMunsell(m) soilPalette(cols, lab = m)
"Empty" profiles are used as placeholders for positions in a SoilProfileCollection
These profiles result from operations that remove or extract portions of horizons
from source profiles.
## S4 method for signature 'SoilProfileCollection' isEmpty(object, ...)
## S4 method for signature 'SoilProfileCollection' isEmpty(object, ...)
object |
A SoilProfileCollection |
... |
Additional arguments not used. |
In a SoilProfileCollection
an empty profile occurs when it has one horizon,
with NA
top and bottom depths. Generally all non-profile ID site and horizon-level
values are all also NA
, but only the depths are checked by isEmpty()
.
logical. Vector of length equal to number of profiles in object
. Returns TRUE
when a profile has one horizon with NA
top and bottom depths
Select soil morphologic data from "Redoximorphic Features as Indicators of Seasonal Saturation, Lowndes County, Georgia". This is a useful sample dataset for testing the analysis and visualization of redoximorphic features.
data(jacobs2000)
data(jacobs2000)
A SoilProfileCollection
object.
Jacobs, P. M., L. T. West, and J. N. Shaw. 2002. Redoximorphic Features as Indicators of Seasonal Saturation, Lowndes County, Georgia. Soil Sci. Soc. Am. J. 66:315-323. doi:doi:10.2136/sssaj2002.3150
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # load data(jacobs2000) # basic plot par(mar=c(0, 1, 3, 1.5)) plotSPC(jacobs2000, name='name', color='matrix_color', width=0.3) # add concentrations addVolumeFraction(jacobs2000, 'concentration_pct', col = jacobs2000$concentration_color, pch = 16, cex.max = 0.5) # add depletions plotSPC(jacobs2000, name='name', color='matrix_color', width=0.3) addVolumeFraction(jacobs2000, 'depletion_pct', col = jacobs2000$depletion_color, pch = 16, cex.max = 0.5) # time saturated plotSPC(jacobs2000, color='time_saturated', cex.names=0.8, col.label = 'Time Saturated') # color contrast: matrix vs. concentrations cc <- colorContrast(jacobs2000$matrix_color_munsell, jacobs2000$concentration_munsell) cc <- na.omit(cc) cc <- cc[order(cc$dE00), ] cc <- unique(cc) par(bg='black', fg='white') colorContrastPlot(cc$m1[1:10], cc$m2[1:10], labels = c('matrix', 'concentration')) colorContrastPlot(cc$m1[11:21], cc$m2[11:21], labels = c('matrix', 'concentration')) # color contrast: depletion vs. concentrations cc <- colorContrast(jacobs2000$depletion_munsell, jacobs2000$concentration_munsell) cc <- na.omit(cc) cc <- cc[order(cc$dE00), ] cc <- unique(cc) par(bg='black', fg='white') colorContrastPlot(cc$m1, cc$m2, labels = c('depletion', 'concentration'))
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # load data(jacobs2000) # basic plot par(mar=c(0, 1, 3, 1.5)) plotSPC(jacobs2000, name='name', color='matrix_color', width=0.3) # add concentrations addVolumeFraction(jacobs2000, 'concentration_pct', col = jacobs2000$concentration_color, pch = 16, cex.max = 0.5) # add depletions plotSPC(jacobs2000, name='name', color='matrix_color', width=0.3) addVolumeFraction(jacobs2000, 'depletion_pct', col = jacobs2000$depletion_color, pch = 16, cex.max = 0.5) # time saturated plotSPC(jacobs2000, color='time_saturated', cex.names=0.8, col.label = 'Time Saturated') # color contrast: matrix vs. concentrations cc <- colorContrast(jacobs2000$matrix_color_munsell, jacobs2000$concentration_munsell) cc <- na.omit(cc) cc <- cc[order(cc$dE00), ] cc <- unique(cc) par(bg='black', fg='white') colorContrastPlot(cc$m1[1:10], cc$m2[1:10], labels = c('matrix', 'concentration')) colorContrastPlot(cc$m1[11:21], cc$m2[11:21], labels = c('matrix', 'concentration')) # color contrast: depletion vs. concentrations cc <- colorContrast(jacobs2000$depletion_munsell, jacobs2000$concentration_munsell) cc <- na.omit(cc) cc <- cc[order(cc$dE00), ] cc <- unique(cc) par(bg='black', fg='white') colorContrastPlot(cc$m1, cc$m2, labels = c('depletion', 'concentration'))
The L1 estimator, or geometric median, is a multivariate generalization of the (univariate) median concept. This function performs a multivariate aggregation (via L1 estimator) according to a suite of ratio-scale soil properties. The L1 estimator is applied to soil profile data that have been sliced to a 1-depth-unit basis. Data should be well stratified by groups defined in fm
, otherwise the L1 median may not make any sense.
See the L1 Profiles Tutorial for additional examples.
L1_profiles( x, fm, basis = 1, method = c("regex", "simple", "constant"), maxDepthRule = c("max", "min"), maxDepthConstant = NULL )
L1_profiles( x, fm, basis = 1, method = c("regex", "simple", "constant"), maxDepthRule = c("max", "min"), maxDepthConstant = NULL )
x |
|
fm |
formula, for example: |
basis |
positive integer, aggregation basis (e.g. 1 for 1-depth-unit intervals). Values other than 1 are not currently supported. |
method |
soil depth evaluation method: "regex" for regular expression, "simple", or "constant". See details. |
maxDepthRule |
maximum depth rule: "max" or "min" See details. |
maxDepthConstant |
positive integer, maximum depth when |
See this related tutorial for additional examples. The method
, maxDepthRule
, and maxDepthConstant
arguments set the maximum depth (over the entire collection) of analysis used to build "L1 profiles". The following rules are available:
method = 'regex'
uses pattern matching on horizon designations (note that hzdesgnname
metadata must be set with hzdesgnname(x) <- 'columnname'
)
method = 'simple'
uses min
or max
as applied to x
, no accounting for non-soil horizons (e.g. Cr or R)
method = 'constant'
uses a fixed depth value supplied by maxDepthConstant
The maxDepthRule
argument sets depth calculation constraint, applied to soil depths computed according to method
(min
or max
).
a SoilProfileCollection
object
This function requires the Gmedian
package.
Cardot, H., Cenac, P. and Zitt, P-A. (2013). Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli, 19, 18-43.
Get the number of profiles in a SoilProfileCollection
## S4 method for signature 'SoilProfileCollection' length(x)
## S4 method for signature 'SoilProfileCollection' length(x)
x |
a SoilProfileCollection |
Generate a lookup table of USDA Particle-Size and Substitute Classes names, ranked according to approximate particle size
lookup_taxpartsize()
lookup_taxpartsize()
A data.frame with a rank column, taxonomic family particle size class, and a flag for contrasting.
Stephen Roecker
Field Book for Describing and Sampling Soils, version 3.0
hz_to_taxpartsize()
, texture_to_taxpartsize()
, SoilTextureLevels()
# class codes lu <- lookup_taxpartsize() idx <- lu$contrasting == FALSE lu$taxpartsize[idx] lu$rank[as.integer(lu$taxpartsize)[idx]]
# class codes lu <- lookup_taxpartsize() idx <- lu$contrasting == FALSE lu$taxpartsize[idx] lu$rank[as.integer(lu$taxpartsize)[idx]]
@description Experimental function to "clean" list input where duplicates exist (that would otherwise prevent pbindlist
). Useful for queries that may have overlapping instances of the same data, for instance a list of SoilProfileCollections where each list element contains profiles gathered from a set of (potentially overlapping) extents.
lunique(l)
lunique(l)
l |
A list of SoilProfileCollections. |
A list of SoilProfileCollections, with duplicate profile IDs removed.
Andrew G. Brown
data(sp5) # EXAMPLE #1 -- resolving overlap # 6 profiles in four sets, and 5,6,7 are missing input <- lapply(list(c(1,3,4), c(2,2,3), NA, c(8,9,1)), function(idx) { if(!all(is.na(idx))) sp5[idx,] }) output <- lunique(input) # 6 profiles are in final SPC; 5,6,7 are missing match(profile_id(pbindlist(output)), profile_id(sp5)) # EXAMPLE #2 -- exact duplicates # deliberately duplicate an SPC sp5_2 <- sp5 res <- lunique(list(sp5, sp5_2)) # the number of profiles in first element is equal to number in sp5 length(res[[1]]) == length(sp5) # second list element contains NA b/c all uniques are in #1 res[[2]]
data(sp5) # EXAMPLE #1 -- resolving overlap # 6 profiles in four sets, and 5,6,7 are missing input <- lapply(list(c(1,3,4), c(2,2,3), NA, c(8,9,1)), function(idx) { if(!all(is.na(idx))) sp5[idx,] }) output <- lunique(input) # 6 profiles are in final SPC; 5,6,7 are missing match(profile_id(pbindlist(output)), profile_id(sp5)) # EXAMPLE #2 -- exact duplicates # deliberately duplicate an SPC sp5_2 <- sp5 res <- lunique(list(sp5, sp5_2)) # the number of profiles in first element is equal to number in sp5 length(res[[1]]) == length(sp5) # second list element contains NA b/c all uniques are in #1 res[[2]]
Get the deepest depth of description out of all profiles in a SoilProfileCollection. Data missing one or more of: bottom depth, profile ID, or any optional attribute are omitted using complete.cases
.
## S4 method for signature 'SoilProfileCollection' max(x, v = NULL, na.rm = TRUE)
## S4 method for signature 'SoilProfileCollection' max(x, v = NULL, na.rm = TRUE)
x |
a SoilProfileCollection |
v |
optional: horizon-level column name to refine calculation |
na.rm |
remove |
Get metadata from SoilProfileCollection. Result is a list. Two entries (aqp_df_class, depth_units) should not be edited in the metadata list directly. There are methods that facilitate changing them – and propagating their changes throughout the collection. Otherwise, metadata list is a free-form slot used to store arbitrary information about the data, how it was collected, citations, etc.
## S4 method for signature 'SoilProfileCollection' metadata(object) ## S4 replacement method for signature 'SoilProfileCollection' metadata(object) <- value
## S4 method for signature 'SoilProfileCollection' metadata(object) ## S4 replacement method for signature 'SoilProfileCollection' metadata(object) <- value
object |
A SoilProfileCollection |
value |
A named list (see examples) |
data(sp5) # replace default metadata with itself metadata(sp5) <- metadata(sp5) # set new metadata attribute value metadata(sp5)$newvalue <- 'foo' # get metadata attribute metadata(sp5)$newvalue
data(sp5) # replace default metadata with itself metadata(sp5) <- metadata(sp5) # set new metadata attribute value metadata(sp5)$newvalue <- 'foo' # get metadata attribute metadata(sp5)$newvalue
Get the shallowest depth of description out of all profiles in a SoilProfileCollection. Data missing one or more of: bottom depth, profile ID, or any optional attribute are omitted using complete.cases
.
## S4 method for signature 'SoilProfileCollection' min(x, v = NULL, na.rm = TRUE)
## S4 method for signature 'SoilProfileCollection' min(x, v = NULL, na.rm = TRUE)
x |
a SoilProfileCollection |
v |
optional: a vector of horizon attribute names to refine calculation |
na.rm |
remove |
Generate a levelplot of missing data from a SoilProfileCollection object.
missingDataGrid( s, max_depth, vars, filter.column = NULL, filter.regex = NULL, cols = NULL, ... )
missingDataGrid( s, max_depth, vars, filter.column = NULL, filter.regex = NULL, cols = NULL, ... )
s |
a SoilProfileCollection object |
max_depth |
integer specifying the max depth of analysis |
vars |
character vector of column names over which to evaluate missing data |
filter.column |
a character string naming the column to apply the filter REGEX to |
filter.regex |
a character string with a regular expression used to filter horizon data OUT of the analysis |
cols |
a vector of colors |
... |
additional arguments passed on to |
This function evaluates a missing data fraction
based on slice-wise
evaluation of named variables in a SoilProfileCollection
object.
A data.frame
describing the percentage of missing data by
variable.
A lattice graphic is printed to the active output device.
D.E. Beaudette
# 10 random profiles set.seed(10101) s <- lapply(as.character(1:10), random_profile) s <- do.call('rbind', s) # randomly sprinkle some missing data s[sample(nrow(s), 5), 'p1'] <- NA s[sample(nrow(s), 5), 'p2'] <- NA s[sample(nrow(s), 5), 'p3'] <- NA # set all p4 and p5 attributes of `soil 1' to NA s[which(s$id == '1'), 'p5'] <- NA s[which(s$id == '1'), 'p4'] <- NA # upgrade to SPC depths(s) <- id ~ top + bottom # plot missing data via slicing + levelplot missingDataGrid( s, max_depth = 100, vars = c('p1', 'p2', 'p3', 'p4', 'p5'), main='Missing Data Fraction' )
# 10 random profiles set.seed(10101) s <- lapply(as.character(1:10), random_profile) s <- do.call('rbind', s) # randomly sprinkle some missing data s[sample(nrow(s), 5), 'p1'] <- NA s[sample(nrow(s), 5), 'p2'] <- NA s[sample(nrow(s), 5), 'p3'] <- NA # set all p4 and p5 attributes of `soil 1' to NA s[which(s$id == '1'), 'p5'] <- NA s[which(s$id == '1'), 'p4'] <- NA # upgrade to SPC depths(s) <- id ~ top + bottom # plot missing data via slicing + levelplot missingDataGrid( s, max_depth = 100, vars = c('p1', 'p2', 'p3', 'p4', 'p5'), main='Missing Data Fraction' )
Simulate mixing of colors in Munsell notation, similar to the way in which mixtures of pigments operate.
mixMunsell( x, w = rep(1, times = length(x))/length(x), mixingMethod = c("exact", "reference", "estimate", "adaptive"), n = 1, keepMixedSpec = FALSE, distThreshold = 0.025, ... )
mixMunsell( x, w = rep(1, times = length(x))/length(x), mixingMethod = c("exact", "reference", "estimate", "adaptive"), n = 1, keepMixedSpec = FALSE, distThreshold = 0.025, ... )
x |
vector of colors in Munsell notation |
w |
vector of proportions, can sum to any number |
mixingMethod |
approach used to simulate a mixture:
|
n |
number of closest matching color chips ( |
keepMixedSpec |
keep weighted geometric mean spectra, final result is a |
distThreshold |
spectral distance used to compute |
... |
additional arguments to |
See the expanded tutorial for examples.
An accurate simulation of pigment mixtures ("subtractive" color mixtures) is incredibly complex due to factors that aren't easily measured or controlled: pigment solubility, pigment particle size distribution, water content, substrate composition, and physical obstruction to name a few. That said, it is possible to simulate reasonable, subtractive color mixtures given a reference spectra library (350-800nm) and some assumptions about pigment qualities and lighting. For the purposes of estimating a mixture of soil colors (these are pigments after all) we can relax these assumptions and assume a standard light source. The only missing piece is the spectral library for all Munsell chips in our color books.
Thankfully, Scott Burns has outlined the entire process, and Paul Centore has provided a Munsell color chip reflectance spectra library. The estimation of a subtractive mixture of soil colors can proceed as follows:
look up the associated spectra for each color in x
compute the weighted (w
argument) geometric mean of the spectra
convert the spectral mixture to the closest Munsell color via:
search for the closest n
matching spectra in the reference library (mixtureMethod = 'reference'
)
direct conversion of spectra to closest Munsell color via spec2Munsell()
(mixtureMethod = 'exact'
)
suggest resulting Munsell chip(s) as the best candidate for a simulated mixture
Key assumptions include:
similar particle size distribution
similar mineralogy (i.e. pigmentation qualities)
similar water content.
For the purposes of estimating (for example) a "mixed soil color within the top 18cm of soil" these assumptions are usually valid. Again, these are estimates that are ultimately "snapped" to the nearest chip and not do not need to approach the accuracy of paint-matching systems.
A message is printed when scaledDistance
is larger than 1.
A data.frame
with the closest matching Munsell color(s):
munsell
: Munsell notation of the n-closest spectra
distance
: spectral (Gower) distance to the n-closest spectra
scaledDistance
: spectral distance scaled by distThreshold
mixingMethod
: method used for each mixture
When keepMixedSpec = TRUE
then a list
:
mixed
: a data.frame
containing the same elements as above
spec
: spectra for the 1st closest match
D.E. Beaudette
Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and Technology (pp. 32-96). North-Holland.
Utilize horizon depths, designations and textures in a profile to estimate the thickness requirement for the Mollic or Umbric epipedon, per criterion 6 in the U.S. Keys to Soil Taxonomy (12th Edition).
mollic.thickness.requirement( p, hzdesgn = hzdesgnname(p, required = TRUE), texcl.attr = hztexclname(p, required = TRUE), clay.attr = hzmetaname(p, "clay", required = TRUE), truncate = TRUE )
mollic.thickness.requirement( p, hzdesgn = hzdesgnname(p, required = TRUE), texcl.attr = hztexclname(p, required = TRUE), clay.attr = hzmetaname(p, "clay", required = TRUE), truncate = TRUE )
p |
A single-profile SoilProfileCollection. |
hzdesgn |
Column in horizon table containing designations. Default: |
texcl.attr |
Column in horizon table containing texture classes. Default: |
clay.attr |
Column in horizon table containing clay contents. Default: |
truncate |
Should sliding scale (Criterion 6C) results be truncated to 18 to 25cm interval? (Experimental; Default: TRUE) |
A unit length numeric vector containing Mollic or Umbric epipedon minimum thickness requirement.
Andrew G. Brown
# construct a fake profile spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxeralfs", hzname = c("A","AB","Bt","BCt","R"), hzdept = c(0, 20, 32, 42, 49), hzdepb = c(20, 32, 42, 49, 200), prop = c(18, 22, 28, 24, NA), texcl = c("l","l","cl", "l","br"), d_value = c(5, 5, 5, 6, NA), m_value = c(2.5, 3, 3, 4, NA), m_chroma = c(2, 3, 4, 4, NA)) # promote to SoilProfileCollection depths(spc) <- id ~ hzdept + hzdepb hzdesgnname(spc) <- 'hzname' hztexclname(spc) <- 'texcl' # print results in table data.frame(id = spc[[idname(spc)]], thickness_req = mollic.thickness.requirement(spc, clay.attr='prop'), thickness_req_nobound = mollic.thickness.requirement(spc, clay.attr='prop', truncate=FALSE))
# construct a fake profile spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxeralfs", hzname = c("A","AB","Bt","BCt","R"), hzdept = c(0, 20, 32, 42, 49), hzdepb = c(20, 32, 42, 49, 200), prop = c(18, 22, 28, 24, NA), texcl = c("l","l","cl", "l","br"), d_value = c(5, 5, 5, 6, NA), m_value = c(2.5, 3, 3, 4, NA), m_chroma = c(2, 3, 4, 4, NA)) # promote to SoilProfileCollection depths(spc) <- id ~ hzdept + hzdepb hzdesgnname(spc) <- 'hzname' hztexclname(spc) <- 'texcl' # print results in table data.frame(id = spc[[idname(spc)]], thickness_req = mollic.thickness.requirement(spc, clay.attr='prop'), thickness_req_nobound = mollic.thickness.requirement(spc, clay.attr='prop', truncate=FALSE))
A lookup table of interpolated Munsell color chips for common soil colors.
data(munsell)
data(munsell)
A data.frame with 8825 rows.
hue
: Munsell Hue, upper case
value
: Munsell Value
chroma
: Munsell Chroma
r
: sRGB "red" value (0-1)
g
: sRGB "green" value (0-1)
b
: sRGB "blue" value (0-1)
L
: CIELAB "L" coordinate
A
: CIELAB "A" coordinate
B
: CIELAB "B" coordinate
See munsell2rgb
for conversion examples. Values
are referenced to the D65 standard illuminant.
Color chip XYZ values: https://www.rit.edu/science/munsell-color-science-lab-educational-resources#munsell-renotation-data
Color conversion equations
http://www.brucelindbloom.com/index.html?ColorCalcHelp.html
Methods used to generate this table
http://dx.doi.org/10.1016/j.cageo.2012.10.020
data(munsell)
data(munsell)
The original database "SpectralReflectancesOf2007MunsellBookOfColorGlossy.txt" was provided by Paul Centore and downloaded July, 2020. Reflectance values for odd chroma have been interpolated from adjacent chips. See aqp/misc/utils/Munsell/
for the entire set of processing steps.
Munsell value typically ranges from 2-9, and chroma from 1-12. Ranges vary by hue. Run aqp:::.summarizeMunsellSpectraRanges()
for a detailed listing by hue.
The original database contains the following description:
This file contains spectral reflectance measurements of X-Rite's 2007 Munsell Book of Color (Glossy Finish). The measurements were made in 2012 with a ColorMunki spectrophotometer. The first column is the Munsell name. The remaining columns give reflectance values for 380 nm to 730 nm, in steps of 10 nm. The reflectance is a value between 0 (indicating that no light at that wavelength is reflected) and 1 (indicating that all the light at that wavelength is reflected). Occasionally an entry is slightly greater than 1. The likely cause is random variability, and those entries can be adjusted to 1 with negligible loss. In all, 1485 colour samples were measured. Researchers are invited to analyze the data in this file.
data(munsell.spectra)
data(munsell.spectra)
A data frame with 89496 rows and 10 variables:
munsell color
hue component
value component
chroma component
wavelength (nm)
reflectance
Centore, Paul. Colour Tools for Painters. https://www.munsellcolourscienceforpainters.com/.
Color conversion based on a look-up table of common soil colors.
munsell2rgb( the_hue, the_value, the_chroma, alpha = 1, maxColorValue = 1, return_triplets = FALSE, returnLAB = FALSE )
munsell2rgb( the_hue, the_value, the_chroma, alpha = 1, maxColorValue = 1, return_triplets = FALSE, returnLAB = FALSE )
the_hue |
a vector of one or more more hues, upper-case (e.g. '10YR') |
the_value |
a vector of one or more values (e.g. '4') |
the_chroma |
a vector of one or more chromas (e.g. '6'), may be NA for neutral hues |
alpha |
numeric, transparency setting used when |
maxColorValue |
maximum sRGB color value, typically |
return_triplets |
logical, return sRGB coordinates (range 0-1) instead of standard hex notation of sRGB (e.g. '#8080B') |
returnLAB |
logical, return CIELAB coordinates (D65 illuminant) |
This function is vectorized without recycling: i.e. the length of each argument must be the same. Both functions will pad output with NA if there are any NA present in the inputs.
Neutral hues are approximated by greyscale shades ranging from 20\
Gley soil colors that are missing a chroma will not be correctly interpreted. Consider using a chroma of 1.
Non-standard Munsell notation (e.g. '7.9YR 2.7/2.0') can be matched (nearest-neighbor, no interpolation) to the closest color within the munsell
sRGB/CIELAB look-up table via getClosestMunsellChip()
. A more accurate estimate of sRGB values from non-standard notation can be achieved with the munsellinterpol package.
See examples below.
A vector of R colors is returned that is the same length as the input data. When return_triplets = TRUE
and/or returnLAB = TRUE
, then a data.frame
(of sample length as input) is returned.
Care should be taken when using the resulting sRGB values; they are close to their Munsell counterparts, but will vary based on your monitor and ambient lighting conditions. Also, the value used for maxColorValue
will affect the brightness of the colors. Th default value (1) will usually give acceptable results, but can be adjusted to force the colors closer to what the user thinks they should look like.
D.E. Beaudette
# neutral hues (N) can be defined with chroma of 0 or NA g <- expand.grid(hue='N', value = 2:8, chroma = 0, stringsAsFactors = FALSE) (m <- munsell2rgb(g$hue, g$value, g$chroma)) soilPalette(m) # back-transform to Munsell notation col2Munsell(t(col2rgb(m)) / 255) # basic example d <- expand.grid(hue = '10YR', value = 2:8, chroma = 1:8, stringsAsFactors = FALSE) d$color <- with(d, munsell2rgb(hue, value, chroma)) # similar to the 10YR color book page plot(value ~ chroma, data = d, col = d$color, pch = 15, cex = 3, las = 1) # multiple pages of hue: hues <- c('2.5YR', '5YR', '7.5YR', '10YR') d <- expand.grid( hue = hues, value = c(2, 2.5, 3:8), chroma = seq(2, 8, by = 2), stringsAsFactors = FALSE ) # convert Munsell -> sRGB d$color <- with(d, munsell2rgb(hue, value, chroma)) # extract CIELAB coordinates with(d, munsell2rgb(hue, value, chroma, returnLAB = TRUE)) # plot: note that we are setting panel order from red --> yellow library(lattice) xyplot( value ~ factor(chroma) | factor(hue, levels = hues), main = "Common Soil Colors", layout = c(4, 1), scales = list(alternating = 1), strip = strip.custom(bg = grey(0.85)), data = d, as.table = TRUE, subscripts = TRUE, xlab = 'Chroma', ylab = 'Value', panel = function(x, y, subscripts, ...) { panel.xyplot(x, y, pch = 15, cex = 4, col = d$color[subscripts]) } ) # convert a non-standard color to closest "chip" in `munsell` look-up table getClosestMunsellChip('7.9YR 2.7/2.0', convertColors = FALSE) # convert directly to hex notation of sRGB getClosestMunsellChip('7.9YR 2.7/2.0')
# neutral hues (N) can be defined with chroma of 0 or NA g <- expand.grid(hue='N', value = 2:8, chroma = 0, stringsAsFactors = FALSE) (m <- munsell2rgb(g$hue, g$value, g$chroma)) soilPalette(m) # back-transform to Munsell notation col2Munsell(t(col2rgb(m)) / 255) # basic example d <- expand.grid(hue = '10YR', value = 2:8, chroma = 1:8, stringsAsFactors = FALSE) d$color <- with(d, munsell2rgb(hue, value, chroma)) # similar to the 10YR color book page plot(value ~ chroma, data = d, col = d$color, pch = 15, cex = 3, las = 1) # multiple pages of hue: hues <- c('2.5YR', '5YR', '7.5YR', '10YR') d <- expand.grid( hue = hues, value = c(2, 2.5, 3:8), chroma = seq(2, 8, by = 2), stringsAsFactors = FALSE ) # convert Munsell -> sRGB d$color <- with(d, munsell2rgb(hue, value, chroma)) # extract CIELAB coordinates with(d, munsell2rgb(hue, value, chroma, returnLAB = TRUE)) # plot: note that we are setting panel order from red --> yellow library(lattice) xyplot( value ~ factor(chroma) | factor(hue, levels = hues), main = "Common Soil Colors", layout = c(4, 1), scales = list(alternating = 1), strip = strip.custom(bg = grey(0.85)), data = d, as.table = TRUE, subscripts = TRUE, xlab = 'Chroma', ylab = 'Value', panel = function(x, y, subscripts, ...) { panel.xyplot(x, y, pch = 15, cex = 4, col = d$color[subscripts]) } ) # convert a non-standard color to closest "chip" in `munsell` look-up table getClosestMunsellChip('7.9YR 2.7/2.0', convertColors = FALSE) # convert directly to hex notation of sRGB getClosestMunsellChip('7.9YR 2.7/2.0')
Convert Munsell hue, value and chroma into sRGB (rgb_R, rgb_G, rgb_B
) and CIELAB (lab_L, lab_A, lab_B) color coordinates using munsell2rgb
. The converted values are stored in the horizons()
slot unless as.spc
is FALSE
, in which case the results are combined with profile and horizon ID columns and returned as the data.frame
subclass used by the SPC.
## S4 method for signature 'SoilProfileCollection' munsell2spc( object, hue = "hue", value = "value", chroma = "chroma", .data = NULL, as.spc = TRUE )
## S4 method for signature 'SoilProfileCollection' munsell2spc( object, hue = "hue", value = "value", chroma = "chroma", .data = NULL, as.spc = TRUE )
object |
A SoilProfileCollection |
hue |
Column name containing numeric hue values. Default: |
value |
Column name containing numeric value values. Default: |
chroma |
Column name containing numeric chroma values. Default: |
.data |
Optional: a character vector of equal length to number of horizons (containing Munsell notation), or a column name in the horizon data OR a data.frame containing three columns (names specified in |
as.spc |
Return a data.frame-like object with ID columns? |
A SoilProfileCollection or data.frame
-like object
parseMunsell
rgb2munsell
munsell2rgb
data(sp3) depths(sp3) <- id ~ top + bottom # inspect input data horizons(sp3)[,c("hue","value","chroma")] # do color conversions to sRGB and LAB, join into horizon data sp3 <- munsell2spc(sp3) # plot rgb "R" coordinate by horizon plot(sp3, color = "rgb_R") # plot lab "A" coordinate by horizon plot(sp3, color = "lab_A") # note that `lab_A` values do not exactly match the original `A` values # this is because `lab_A` was computed from the (field determined) Munsell color notation, # while `A` was directly measured in the lab by colorimeter plot(sp3$A, sp3$lab_A, xlab = 'Measured', ylab = 'Converted from Field Observed Munsell')
data(sp3) depths(sp3) <- id ~ top + bottom # inspect input data horizons(sp3)[,c("hue","value","chroma")] # do color conversions to sRGB and LAB, join into horizon data sp3 <- munsell2spc(sp3) # plot rgb "R" coordinate by horizon plot(sp3, color = "rgb_R") # plot lab "A" coordinate by horizon plot(sp3, color = "lab_A") # note that `lab_A` values do not exactly match the original `A` values # this is because `lab_A` was computed from the (field determined) Munsell color notation, # while `A` was directly measured in the lab by colorimeter plot(sp3$A, sp3$lab_A, xlab = 'Measured', ylab = 'Converted from Field Observed Munsell')
Position data for the 40 standard Munsell hues (and neutral). Data include angular positions (compass-style, origin at [x = 0, y = 1]
, CW rotation) and Cartesian coordinates on the unit circle.
data(munsellHuePosition)
data(munsellHuePosition)
An object of class data.frame
with 41 rows and 4 columns.
Munsell book of color. 1976. Macbeth, a Division of Kollmorgen Corp., Baltimore, MD.
mutate_profile()
is a function used for transforming SoilProfileCollections. Each expression is applied to site or horizon level attributes of individual profiles. This distinguishes this function from transform
, which is applied to all values in a collection, regardless of which profile they came from.
mutate_profile(object, ..., col_names = NULL, horizon_level = NULL) mutate_profile_raw(object, expr, col_names = NULL, horizon_level = NULL)
mutate_profile(object, ..., col_names = NULL, horizon_level = NULL) mutate_profile_raw(object, expr, col_names = NULL, horizon_level = NULL)
object |
A SoilProfileCollection |
... |
A set of comma-delimited R expressions that resolve to a transformation to be applied to a single profile e.g |
col_names |
character. Optional column names. Should match the number of expressions in |
horizon_level |
logical. If |
expr |
A list of expressions in terms of column names in site or horizon table of |
If the length an expression's result matches the number of horizons, the result is stored as a horizon-level variable. If the result has length 1, it is stored as a site-level variable. In the ambiguous case where the first and last profile have only one horizon, the results are stored in the horizon slot by default. To force results into site slot use horizon_level = FALSE
.
A SoilProfileCollection.
Andrew G. Brown.
data(sp4) depths(sp4) <- id ~ top + bottom mutate_profile(sp4, clay_wtd_average = weighted.mean(clay, bottom - top)) data(jacobs2000) set.seed(123) ## col_names allows for column names to be calculated x <- mutate_profile(jacobs2000, bottom - top / sum(bottom - top), col_names = paste0("relthk", floor(runif(1, 0, 100)))) x$relthk28 # mutate_profile_raw allows for lists of expressions to be evaluated master_desgn <- c("O", "A", "E", "B", "C", "R", "L", "M") thk_names <- paste0("thk_", master_desgn) # calculate thickness for each horizon x$thk <- x$bottom - x$top ## construct an arbitrary number of expressions using variable inputs ops <- lapply(master_desgn, function(x) { substitute(sum(thk[grepl(PATTERN, name)], na.rm = TRUE), list(PATTERN = x)) }) names(ops) <- thk_names # do mutation y <- mutate_profile_raw(x, ops) site(y)[c(idname(y), thk_names)]
data(sp4) depths(sp4) <- id ~ top + bottom mutate_profile(sp4, clay_wtd_average = weighted.mean(clay, bottom - top)) data(jacobs2000) set.seed(123) ## col_names allows for column names to be calculated x <- mutate_profile(jacobs2000, bottom - top / sum(bottom - top), col_names = paste0("relthk", floor(runif(1, 0, 100)))) x$relthk28 # mutate_profile_raw allows for lists of expressions to be evaluated master_desgn <- c("O", "A", "E", "B", "C", "R", "L", "M") thk_names <- paste0("thk_", master_desgn) # calculate thickness for each horizon x$thk <- x$bottom - x$top ## construct an arbitrary number of expressions using variable inputs ops <- lapply(master_desgn, function(x) { substitute(sum(thk[grepl(PATTERN, name)], na.rm = TRUE), list(PATTERN = x)) }) names(ops) <- thk_names # do mutation y <- mutate_profile_raw(x, ops) site(y)[c(idname(y), thk_names)]
Get names of columns in site and horizons table of a SoilProfileCollection.
## S4 method for signature 'SoilProfileCollection' names(x)
## S4 method for signature 'SoilProfileCollection' names(x)
x |
a SoilProfileCollection |
Replacement for profile_compare()
.
Performs a numerical comparison of soil profiles using named properties, based on a weighted, summed, depth-segment-aligned dissimilarity calculation.
Variability in soil depth can interfere significantly with the calculation of between-profile dissimilarity– what is the numerical “distance” (or dissimilarity) between a slice of soil from profile A and the corresponding, but missing, slice from a shallower profile B? Gower's distance metric would yield a NULL distance, despite the fact that intuition suggests otherwise: shallower soils should be more dissimilar from deeper soils. For example, when a 25 cm deep profile is compared with a 50 cm deep profile, numerical distances are only accumulated for the first 25 cm of soil (distances from 26 - 50 cm are NULL). When summed, the total distance between these profiles will generally be less than the distance between two profiles of equal depth. Our algorithm has an option (setting replace_na=TRUE) to replace NULL distances with the maximum distance between any pair of profiles for the current depth slice. In this way, the numerical distance between a slice of soil and a corresponding slice of non-soil reflects the fact that these two materials should be treated very differently (i.e. maximum dissimilarity).
This alternative calculation of dissimilarities between soil and non-soil slices solves the problem of comparing shallow profiles with deeper profiles. However, it can result in a new problem: distances calculated between two shallow profiles will be erroneously inflated beyond the extent of either profile's depth. Our algorithm has an additional option (setting add_soil_flag=TRUE) that will preserve NULL distances between slices when both slices represent non-soil material. With this option enabled, shallow profiles will only accumulate mutual dissimilarity to the depth of the deeper profile.
Slices are classified as 'soil' down to the maximum depth to which at least one of variables used in the dissimilarity calculation is not NA. This will cause problems when profiles within a collection contain all NAs within the columns used to determine dissimilarity. An approach for identifying and removing these kind of profiles is presented in the examples section below.
A notice is issued if there are any NA values within the matrix used for distance calculations, as these values are optionally replaced by the max dissimilarity.
Our approach builds on the work of (Moore, 1972) and the previously mentioned depth-slicing algorithm.
NCSP( x, vars, fm = NULL, weights = rep(1, times = length(vars)), maxDepth = max(x), k = 0, isColor = FALSE, rescaleResult = FALSE, progress = TRUE, verbose = TRUE, returnDepthDistances = FALSE )
NCSP( x, vars, fm = NULL, weights = rep(1, times = length(vars)), maxDepth = max(x), k = 0, isColor = FALSE, rescaleResult = FALSE, progress = TRUE, verbose = TRUE, returnDepthDistances = FALSE )
x |
|
vars |
character vector, names of horizon attributes to use in the classification |
fm |
formula, formula as specified to |
weights |
numeric vector, same length as |
maxDepth |
numeric, maximum depth of analysis |
k |
numeric, weighting coefficient, see examples |
isColor |
logical: variables represent color, should be CIELAB coordinates (D65 illuminant), weights are ignored. Variables should be named |
rescaleResult |
logical, distance matrix is rescaled based on max(D) |
progress |
logical, report progress |
verbose |
logical, extra output messages |
returnDepthDistances |
logical, return a list of distances by depth slice |
NCSP()
will overwrite the removed.profiles
metadata from x
.
Dylan E. Beaudette and Jon Maynard
J.J Maynard, S.W. Salley, D.E. Beaudette, J.E Herrick. Numerical soil classification supports soil identification by citizen scientists using limited, simple soil observations. Soil Sci. Soc. Am. J. 2020; 84: 1675-1692. doi:10.1002/saj2.20119.
D.E. Beaudette, P. Roudier, A.T. O'Geen, Algorithms for quantitative pedology: A toolkit for soil scientists, Computers & Geosciences, Volume 52, 2013, Pages 258-268, ISSN 0098-3004, doi:10.1016/j.cageo.2012.10.020.
Moore, A.; Russell, J. & Ward, W. Numerical analysis of soils: A comparison of three soil profile models with field classification. Journal of Soil Science, 1972, 23, 194-209.
dice()
, cluster::daisy()
, compareSites()
Get the number of horizons in a SoilProfileCollection
## S4 method for signature 'SoilProfileCollection' nrow(x)
## S4 method for signature 'SoilProfileCollection' nrow(x)
x |
a SoilProfileCollection |
An example SoilProfileCollection
object created by soilDB::fetchOSD()
, derived from the Cecil, Appling, and Bonneau Official Series Descriptions.
data(osd)
data(osd)
A SoilProfileCollection
Panel function for plotting grouped soil property data, along with upper and lower estimates of uncertainty.
This function can be used to replace panel.superpose
when plotting
depth function data. When requested, contributing fraction data are printed
using colors the same color as corresponding depth function lines unless a
single color value is given via cf.col
.
This function is not able to apply transformations (typically log = 10
) applied in the scales
argument to xyplot
to upper/lower bounds. These will have to be manually applied. See examples.
panel.depth_function( x, y, id, upper = NA, lower = NA, subscripts = NULL, groups = NULL, sync.colors = FALSE, cf = NA, cf.col = NA, cf.interval = 20, ... ) prepanel.depth_function( x, y, upper = NA, lower = NA, subscripts, groups = NULL, ... )
panel.depth_function( x, y, id, upper = NA, lower = NA, subscripts = NULL, groups = NULL, sync.colors = FALSE, cf = NA, cf.col = NA, cf.interval = 20, ... ) prepanel.depth_function( x, y, upper = NA, lower = NA, subscripts, groups = NULL, ... )
x |
x values (generated by calling lattice function) |
y |
y values (generated by calling lattice function) |
id |
vector of id labels, same length as x and y–only required when plotting segments (see Details section) |
upper |
vector of upper confidence envelope values |
lower |
vector of lower confidence envelope values |
subscripts |
paneling indices (generated by calling lattice function) |
groups |
grouping data (generated by calling lattice function) |
sync.colors |
optionally sync the fill color within the region bounded by (lower–upper) with the line colors |
cf |
optionally annotate contributing fraction data at regular depth
intervals see |
cf.col |
optional color for contributing fraction values, typically used to override the line color |
cf.interval |
number of depth units to space printed contributing fraction values |
... |
further arguments to lower-level lattice plotting functions, see below |
D.E. Beaudette
library(lattice) data(sp1) # 1. plotting mechanism for step-functions derived from soil profile data xyplot( cbind(top, bottom) ~ prop, data = sp1, id = sp1$id, panel = panel.depth_function, ylim = c(250, -10), scales = list(y = list(tick.number = 10)), xlab = 'Property', ylab = 'Depth (cm)', main = 'panel.depth_function() demo' ) # 1.1 include groups argument to leverage lattice styling framework sp1$group <- factor(sp1$group, labels = c('Group 1', 'Group2')) xyplot( cbind(top, bottom) ~ prop, groups = group, data = sp1, id = sp1$id, panel = panel.depth_function, ylim = c(250, -10), scales = list(y = list(tick.number = 10)), xlab = 'Property', ylab = 'Depth (cm)', main = 'panel.depth_function() demo', auto.key = list( columns = 2, points = FALSE, lines = TRUE ), par.settings = list(superpose.line = list(col = c( 'Orange', 'RoyalBlue' ))) ) # more complex examples, using step functions with grouped data # better looking figures with less customization via tactile package if(requireNamespace('tactile')) { library(data.table) library(lattice) library(tactile) # example data data(sp6) # a single profile x <- sp6[1:5, ] # wide -> long format x.long <- data.table::melt( data.table::data.table(x), id.vars = c('id', 'top', 'bottom'), measure.vars = c('sand', 'silt', 'clay') ) # (optional) convert back to data.frame x.long <- as.data.frame(x.long) # three variables sharing a common axis # factor levels set by melt() xyplot( cbind(top, bottom) ~ value | id, groups = variable, data = x.long, id = x.long$id, ylim = c(200, -5), xlim = c(10, 60), scales = list(alternating = 1, y = list(tick.number = 10)), par.settings = tactile.theme(superpose.line = list(lwd = 2)), xlab = 'Sand, Silt, Clay (%)', ylab = 'Depth (cm)', panel = panel.depth_function, auto.key = list(columns = 3, lines = TRUE, points = FALSE), asp = 1.5 ) # all profiles x <- sp6 # wide -> long format x.long <- data.table::melt( data.table::data.table(x), id.vars = c('id', 'top', 'bottom'), measure.vars = c('sand', 'silt', 'clay') ) # (optional) convert back to data.frame x.long <- as.data.frame(x.long) # three variables sharing a common axis # factor levels set by melt() xyplot( cbind(top, bottom) ~ value | id, groups = variable, data = x.long, id = x.long$id, ylim = c(200, -5), xlim = c(0, 70), scales = list(alternating = 1, y = list(tick.number = 10)), par.settings = tactile.theme(superpose.line = list(lwd = 2)), xlab = 'Sand, Silt, Clay (%)', ylab = 'Depth (cm)', panel = panel.depth_function, auto.key = list(columns = 3, lines = TRUE, points = FALSE), as.table = TRUE ) xyplot( cbind(top, bottom) ~ value, groups = variable, data = x.long, id = x.long$id, ylim = c(200, -5), xlim = c(0, 70), scales = list(alternating = 1, y = list(tick.number = 10)), par.settings = tactile.theme(superpose.line = list(lwd = 2)), xlab = 'Sand, Silt, Clay (%)', ylab = 'Depth (cm)', panel = panel.depth_function, auto.key = list(columns = 3, lines = TRUE, points = FALSE), as.table = TRUE ) xyplot( cbind(top, bottom) ~ value | variable, groups = variable, data = x.long, id = x.long$id, ylim = c(200, -5), xlim = c(0, 70), scales = list(alternating = 1, y = list(tick.number = 10)), par.settings = tactile.theme(superpose.line = list(lwd = 2)), xlab = 'Sand, Silt, Clay (%)', ylab = 'Depth (cm)', panel = panel.depth_function, auto.key = list(columns = 3, lines = TRUE, points = FALSE), as.table = TRUE ) xyplot( cbind(top, bottom) ~ value | variable, data = x.long, id = x.long$id, ylim = c(200, -5), xlim = c(0, 70), scales = list(alternating = 1, y = list(tick.number = 10)), par.settings = tactile.theme(superpose.line = list(lwd = 2)), xlab = 'Sand, Silt, Clay (%)', ylab = 'Depth (cm)', panel = panel.depth_function, auto.key = list(columns = 3, lines = TRUE, points = FALSE), as.table = TRUE ) }
library(lattice) data(sp1) # 1. plotting mechanism for step-functions derived from soil profile data xyplot( cbind(top, bottom) ~ prop, data = sp1, id = sp1$id, panel = panel.depth_function, ylim = c(250, -10), scales = list(y = list(tick.number = 10)), xlab = 'Property', ylab = 'Depth (cm)', main = 'panel.depth_function() demo' ) # 1.1 include groups argument to leverage lattice styling framework sp1$group <- factor(sp1$group, labels = c('Group 1', 'Group2')) xyplot( cbind(top, bottom) ~ prop, groups = group, data = sp1, id = sp1$id, panel = panel.depth_function, ylim = c(250, -10), scales = list(y = list(tick.number = 10)), xlab = 'Property', ylab = 'Depth (cm)', main = 'panel.depth_function() demo', auto.key = list( columns = 2, points = FALSE, lines = TRUE ), par.settings = list(superpose.line = list(col = c( 'Orange', 'RoyalBlue' ))) ) # more complex examples, using step functions with grouped data # better looking figures with less customization via tactile package if(requireNamespace('tactile')) { library(data.table) library(lattice) library(tactile) # example data data(sp6) # a single profile x <- sp6[1:5, ] # wide -> long format x.long <- data.table::melt( data.table::data.table(x), id.vars = c('id', 'top', 'bottom'), measure.vars = c('sand', 'silt', 'clay') ) # (optional) convert back to data.frame x.long <- as.data.frame(x.long) # three variables sharing a common axis # factor levels set by melt() xyplot( cbind(top, bottom) ~ value | id, groups = variable, data = x.long, id = x.long$id, ylim = c(200, -5), xlim = c(10, 60), scales = list(alternating = 1, y = list(tick.number = 10)), par.settings = tactile.theme(superpose.line = list(lwd = 2)), xlab = 'Sand, Silt, Clay (%)', ylab = 'Depth (cm)', panel = panel.depth_function, auto.key = list(columns = 3, lines = TRUE, points = FALSE), asp = 1.5 ) # all profiles x <- sp6 # wide -> long format x.long <- data.table::melt( data.table::data.table(x), id.vars = c('id', 'top', 'bottom'), measure.vars = c('sand', 'silt', 'clay') ) # (optional) convert back to data.frame x.long <- as.data.frame(x.long) # three variables sharing a common axis # factor levels set by melt() xyplot( cbind(top, bottom) ~ value | id, groups = variable, data = x.long, id = x.long$id, ylim = c(200, -5), xlim = c(0, 70), scales = list(alternating = 1, y = list(tick.number = 10)), par.settings = tactile.theme(superpose.line = list(lwd = 2)), xlab = 'Sand, Silt, Clay (%)', ylab = 'Depth (cm)', panel = panel.depth_function, auto.key = list(columns = 3, lines = TRUE, points = FALSE), as.table = TRUE ) xyplot( cbind(top, bottom) ~ value, groups = variable, data = x.long, id = x.long$id, ylim = c(200, -5), xlim = c(0, 70), scales = list(alternating = 1, y = list(tick.number = 10)), par.settings = tactile.theme(superpose.line = list(lwd = 2)), xlab = 'Sand, Silt, Clay (%)', ylab = 'Depth (cm)', panel = panel.depth_function, auto.key = list(columns = 3, lines = TRUE, points = FALSE), as.table = TRUE ) xyplot( cbind(top, bottom) ~ value | variable, groups = variable, data = x.long, id = x.long$id, ylim = c(200, -5), xlim = c(0, 70), scales = list(alternating = 1, y = list(tick.number = 10)), par.settings = tactile.theme(superpose.line = list(lwd = 2)), xlab = 'Sand, Silt, Clay (%)', ylab = 'Depth (cm)', panel = panel.depth_function, auto.key = list(columns = 3, lines = TRUE, points = FALSE), as.table = TRUE ) xyplot( cbind(top, bottom) ~ value | variable, data = x.long, id = x.long$id, ylim = c(200, -5), xlim = c(0, 70), scales = list(alternating = 1, y = list(tick.number = 10)), par.settings = tactile.theme(superpose.line = list(lwd = 2)), xlab = 'Sand, Silt, Clay (%)', ylab = 'Depth (cm)', panel = panel.depth_function, auto.key = list(columns = 3, lines = TRUE, points = FALSE), as.table = TRUE ) }
Split Munsell color notation into "hue", "value", and "chroma", with optional conversion to sRGB hex notation, sRGB coordinates, and CIELAB coordinates. Conversion is performed by munsell2rgb
.
parseMunsell(munsellColor, convertColors = TRUE, delim = NA, ...)
parseMunsell(munsellColor, convertColors = TRUE, delim = NA, ...)
munsellColor |
character vector of Munsell colors (e.g. |
convertColors |
logical, convert colors to sRGB hex notation, sRGB coordinates, CIELAB coordinates |
delim |
optional, specify the type of delimiter used between value and chroma parts of the Munsell code. By default ":", ",:, "'", and "/" are supported. |
... |
additional arguments to |
a data.frame
object
P. Roudier and D.E. Beaudette
# just sRGB parseMunsell("10YR 3/5", return_triplets = TRUE) # sRGB + CIELAB (D65 illuminant) parseMunsell("10YR 3/5", return_triplets = TRUE, returnLAB = TRUE) # CIELAB only parseMunsell("10YR 3/5", return_triplets = FALSE, returnLAB = TRUE) # neutral hue # note chroma encoded as '0' parseMunsell('N 3/', convertColors = FALSE)
# just sRGB parseMunsell("10YR 3/5", return_triplets = TRUE) # sRGB + CIELAB (D65 illuminant) parseMunsell("10YR 3/5", return_triplets = TRUE, returnLAB = TRUE) # CIELAB only parseMunsell("10YR 3/5", return_triplets = FALSE, returnLAB = TRUE) # neutral hue # note chroma encoded as '0' parseMunsell('N 3/', convertColors = FALSE)
See combine(...)
for a connotative short-hand method that does not require that SoilProfileCollection
be in a list. Profiles will be sorted based on character sorting of profile ID.
pbindlist(l, new.idname = NULL, verbose = TRUE)
pbindlist(l, new.idname = NULL, verbose = TRUE)
l |
a list of SoilProfileCollection objects |
new.idname |
Optional: a character referring to a new column name to put unique profile IDs in; default: |
verbose |
Produce warnings and messages regarding results? default: |
Input data must share a common depth unit, and if spatial data are present, a common CRS and coordinate names. In the case of non-conformal @idname and/or @depthcols, the first SoilProfileCollection is used as a template. If one or more subsequent list elements has non-unique values in a site level attribute of that name, the ID name from the second list element is attempted, and so on. Non-conforming spatial data are dropped from the final result (returns default empty SpatialPoints
).
a SoilProfileCollection object
D.E. Beaudette and A.G. Brown
# example data data(sp2, package = 'aqp') depths(sp2) <- id ~ top + bottom site(sp2) <- ~ surface # copy pieces x <- sp2[1:5, ] y <- sp2[6:10, ] # reset IDs and combine profile_id(y) <- sprintf("%s-copy", profile_id(y)) # this should work z <- pbindlist(list(x, y)) # check plot(z)
# example data data(sp2, package = 'aqp') depths(sp2) <- id ~ top + bottom site(sp2) <- ~ surface # copy pieces x <- sp2[1:5, ] y <- sp2[6:10, ] # reset IDs and combine profile_id(y) <- sprintf("%s-copy", profile_id(y)) # this should work z <- pbindlist(list(x, y)) # check plot(z)
See NCSP()
for the modern interface to numerical soil profile comparison/classification.
pc( s, vars, max_d, k, filter = NULL, sample_interval = NA, replace_na = TRUE, add_soil_flag = TRUE, return_depth_distances = FALSE, strict_hz_eval = FALSE, progress = "none", plot.depth.matrix = FALSE, rescale.result = FALSE, verbose = FALSE ) pc.SPC(s, vars, rescale.result = FALSE, ...) ## S4 method for signature 'SoilProfileCollection' profile_compare(s, vars, rescale.result = FALSE, ...) ## S4 method for signature 'data.frame' profile_compare( s, vars, max_d, k, filter = NULL, sample_interval = NA, replace_na = TRUE, add_soil_flag = TRUE, return_depth_distances = FALSE, strict_hz_eval = FALSE, progress = "none", plot.depth.matrix = FALSE, rescale.result = FALSE, verbose = FALSE )
pc( s, vars, max_d, k, filter = NULL, sample_interval = NA, replace_na = TRUE, add_soil_flag = TRUE, return_depth_distances = FALSE, strict_hz_eval = FALSE, progress = "none", plot.depth.matrix = FALSE, rescale.result = FALSE, verbose = FALSE ) pc.SPC(s, vars, rescale.result = FALSE, ...) ## S4 method for signature 'SoilProfileCollection' profile_compare(s, vars, rescale.result = FALSE, ...) ## S4 method for signature 'data.frame' profile_compare( s, vars, max_d, k, filter = NULL, sample_interval = NA, replace_na = TRUE, add_soil_flag = TRUE, return_depth_distances = FALSE, strict_hz_eval = FALSE, progress = "none", plot.depth.matrix = FALSE, rescale.result = FALSE, verbose = FALSE )
s |
A SoilProfileCollection |
vars |
Variable names |
max_d |
depth-slices up to this depth are considered in the comparison |
k |
a depth-weighting coeficient, use '0' for no depth-weighting (see examples below) |
filter |
an index used to determine which horizons (rows) are included in the analysis |
sample_interval |
use every n-th depth slice instead of every depth slice, useful for working with > 1000 profiles at a time |
replace_na |
if TRUE, missing data are replaced by maximum dissimilarity (TRUE) |
add_soil_flag |
The algorithm will generate a 'soil'/'non-soil' matrix for use when comparing soil profiles with large differences in depth (TRUE). See details section below. |
return_depth_distances |
return intermediate, depth-wise dissimilarity results (FALSE) |
strict_hz_eval |
should horizons be strictly checked for internal self-consistency? (FALSE) |
progress |
'none' (default) |
plot.depth.matrix |
should a plot of the 'soil'/'non-soil' matrix be returned (FALSE) |
rescale.result |
Rescale result? Default: FALSE |
verbose |
extra debug output (FALSE) |
... |
Additional arguments passed to |
Performs a numerical comparison of soil profiles using named properties,
based on a weighted, summed, depth-segment-aligned dissimilarity
calculation. If s
is a SoilProfileCollection
,
site-level variables (2 or more) can also be used. The site-level and
horizon-level dissimilarity matrices are then re-scaled and averaged.
Variability in soil depth can interfere significantly with the calculation of between-profile dissimilarity– what is the numerical “distance” (or dissimilarity) between a slice of soil from profile A and the corresponding, but missing, slice from a shallower profile B? Gower's distance metric would yield a NULL distance, despite the fact that intuition suggests otherwise: shallower soils should be more dissimilar from deeper soils. For example, when a 25 cm deep profile is compared with a 50 cm deep profile, numerical distances are only accumulated for the first 25 cm of soil (distances from 26 - 50 cm are NULL). When summed, the total distance between these profiles will generally be less than the distance between two profiles of equal depth. Our algorithm has an option (setting replace_na=TRUE) to replace NULL distances with the maximum distance between any pair of profiles for the current depth slice. In this way, the numerical distance between a slice of soil and a corresponding slice of non-soil reflects the fact that these two materials should be treated very differently (i.e. maximum dissimilarity).
This alternative calculation of dissimilarities between soil and non-soil slices solves the problem of comparing shallow profiles with deeper profiles. However, it can result in a new problem: distances calculated between two shallow profiles will be erroneously inflated beyond the extent of either profile's depth. Our algorithm has an additional option (setting add_soil_flag=TRUE) that will preserve NULL distances between slices when both slices represent non-soil material. With this option enabled, shallow profiles will only accumulate mutual dissimilarity to the depth of the deeper profile.
Note that when the add_soil_flag
option is enabled (default), slices
are classified as 'soil' down to the maximum depth to which at least one of
variables used in the dissimilarity calculation is not NA. This will cause
problems when profiles within a collection contain all NAs within the
columns used to determine dissimilarity. An approach for identifying and
removing these kind of profiles is presented in the examples section below.
A notice is issued if there are any NA values within the matrix used for distance calculations, as these values are optionally replaced by the max dissimilarity.
Our approach builds on the work of (Moore, 1972) and the previously mentioned depth-slicing algorithm.
A dissimilarity matrix object of class 'dissimilarity, dist', optionally scaled by max(D).
Dylan E. Beaudette
D.E. Beaudette, P. Roudier, A.T. O'Geen, Algorithms for quantitative pedology: A toolkit for soil scientists, Computers & Geosciences, Volume 52, 2013, Pages 258-268, ISSN 0098-3004, doi:10.1016/j.cageo.2012.10.020.
Moore, A.; Russell, J. & Ward, W. Numerical analysis of soils: A comparison of three soil profile models with field classification. Journal of Soil Science, 1972, 23, 194-209.
# See ?NCSP for examples
# See ?NCSP for examples
"Perturbs" the boundary between horizons or the thickness of horizons using a standard deviation specified as a horizon-level attribute. This is selected using either boundary.attr
or thickness.attr
to specify the column name.
The boundary standard deviation corresponds roughly to the concept of "horizon boundary distinctness." In contrast, the horizon thickness standard deviation corresponds roughly to the "variation in horizon thickness" so it may be determined from several similar profiles that have a particular layer "in common."
perturb( p, n = 100, id = NULL, thickness.attr = NULL, boundary.attr = NULL, min.thickness = 1, max.depth = NULL, new.idname = "pID" )
perturb( p, n = 100, id = NULL, thickness.attr = NULL, boundary.attr = NULL, min.thickness = 1, max.depth = NULL, new.idname = "pID" )
p |
A SoilProfileCollection |
n |
Number of new profiles to generate (default: |
id |
a vector of profile IDs with length equal to ( |
thickness.attr |
Horizon variance attribute containing numeric "standard deviations" reflecting horizon thickness |
boundary.attr |
Horizon variance attribute containing numeric "standard deviations" reflecting boundary transition distinctness |
min.thickness |
Minimum thickness of permuted horizons (default: |
max.depth |
Depth below which horizon depths are not perturbed (default: |
new.idname |
New column name to contain unique profile ID (default: |
Imagine a Normal curve with mean centered on the vertical (depth axis) at a representative value (RV) horizon bottom depth or thickness. By the Empirical Rule for Normal distribution, two "standard deviations" above or below that "central" mean value represent 95% of the "typical volume" of that horizon or boundary.
perturb()
can leverage semi-quantitative (ordered factor) levels of boundary distinctness/topography for the upper and lower boundary of individual horizons. A handy function for this is hzDistinctnessCodeToOffset()
. The boundary.attr
is arguably easier to parameterize from a single profile description or "Form 232" where horizon boundary distinctness classes (based on vertical distance of transition) are conventionally recorded for each layer.
Alternately, perturb()
can be parameterized using standard deviation in thickness of layers derived from a group. Say, the variance parameters are defined from a set of pedons correlated to a particular series or component, and the template "seed" profile is, for example, the Official Series Description or the Representative Component Pedon.
a SoilProfileCollection with n
realizations of each profile in p
D.E. Beaudette, A.G. Brown
random_profile()
hzDistinctnessCodeToOffset()
### THICKNESS # load sample data and convert into SoilProfileCollection data(sp3) depths(sp3) <- id ~ top + bottom # select a profile to use as the basis for simulation s <- sp3[3,] # reset horizon names s$name <- paste('H', seq_along(s$name), sep = '') # simulate 25 new profiles horizons(s)$hz.sd <- 2 # constant standard deviation sim.1 <- perturb(s, n = 25, thickness.attr = "hz.sd") # simulate 25 new profiles using different SD for each horizon horizons(s)$hz.sd <- c(1, 2, 5, 5, 5, 10, 3) sim.2 <- perturb(s, n = 25, thickness.attr = "hz.sd") # plot par(mfrow = c(2, 1), mar = c(0, 0, 0, 0)) plot(sim.1) mtext( 'SD = 2', side = 2, line = -1.5, font = 2, cex = 0.75 ) plot(sim.2) mtext( 'SD = c(1, 2, 5, 5, 5, 10, 3)', side = 2, line = -1.5, font = 2, cex = 0.75 ) # aggregate horizonation of simulated data # note: set class_prob_mode=2 as profiles were not defined to a constant depth sim.2$name <- factor(sim.2$name) a <- slab(sim.2, ~ name, cpm=2) # convert to long format for plotting simplicity library(data.table) a.long <- data.table::melt(data.table::as.data.table(a), id.vars = c('top', 'bottom'), measure.vars = levels(sim.2$name)) # plot horizon probabilities derived from simulated data # dashed lines are the original horizon boundaries library(lattice) xyplot( top ~ value, groups = variable, data = a.long, subset = value > 0, ylim = c(100,-5), type = c('l', 'g'), asp = 1.5, ylab = 'Depth (cm)', xlab = 'Probability', auto.key = list( columns = 4, lines = TRUE, points = FALSE ), panel = function(...) { panel.xyplot(...) panel.abline(h = s$top, lty = 2, lwd = 2) } ) ### BOUNDARIES # example with sp1 (using boundary distinctness) data("sp1") depths(sp1) <- id ~ top + bottom # specify "standard deviation" for boundary thickness # consider a normal curve centered at boundary RV depth # lookup table: ~maximum thickness of boundary distinctness classes, divided by 3 bound.lut <- c('V'=0.5,'A'=2,'C'=5,'G'=15,'D'=45) / 3 ## V A C G D ## 0.1666667 0.6666667 1.6666667 5.0000000 15.0000000 sp1$bound_sd <- bound.lut[sp1$bound_distinct] # hold any NA boundary distinctness constant sp1$bound_sd[is.na(sp1$bound_sd)] <- 0 quantile(sp1$bound_sd, na.rm = TRUE) p <- sp1[3] # assume boundary sd is 1/12 midpoint of horizon depth # (i.e. general relationship: SD increases (less well known) with depth) sp1 <- transform(sp1, midpt = (bottom - top) / 2 + top, bound_sd = midpt / 12) quantile(sp1$bound_sd) perturb(p, boundary.attr = "bound_sd", n = 10) ### Custom IDs ids <- sprintf("%s-%03d", profile_id(p), 1:10) perturb(p, boundary.attr = "bound_sd", id = ids)
### THICKNESS # load sample data and convert into SoilProfileCollection data(sp3) depths(sp3) <- id ~ top + bottom # select a profile to use as the basis for simulation s <- sp3[3,] # reset horizon names s$name <- paste('H', seq_along(s$name), sep = '') # simulate 25 new profiles horizons(s)$hz.sd <- 2 # constant standard deviation sim.1 <- perturb(s, n = 25, thickness.attr = "hz.sd") # simulate 25 new profiles using different SD for each horizon horizons(s)$hz.sd <- c(1, 2, 5, 5, 5, 10, 3) sim.2 <- perturb(s, n = 25, thickness.attr = "hz.sd") # plot par(mfrow = c(2, 1), mar = c(0, 0, 0, 0)) plot(sim.1) mtext( 'SD = 2', side = 2, line = -1.5, font = 2, cex = 0.75 ) plot(sim.2) mtext( 'SD = c(1, 2, 5, 5, 5, 10, 3)', side = 2, line = -1.5, font = 2, cex = 0.75 ) # aggregate horizonation of simulated data # note: set class_prob_mode=2 as profiles were not defined to a constant depth sim.2$name <- factor(sim.2$name) a <- slab(sim.2, ~ name, cpm=2) # convert to long format for plotting simplicity library(data.table) a.long <- data.table::melt(data.table::as.data.table(a), id.vars = c('top', 'bottom'), measure.vars = levels(sim.2$name)) # plot horizon probabilities derived from simulated data # dashed lines are the original horizon boundaries library(lattice) xyplot( top ~ value, groups = variable, data = a.long, subset = value > 0, ylim = c(100,-5), type = c('l', 'g'), asp = 1.5, ylab = 'Depth (cm)', xlab = 'Probability', auto.key = list( columns = 4, lines = TRUE, points = FALSE ), panel = function(...) { panel.xyplot(...) panel.abline(h = s$top, lty = 2, lwd = 2) } ) ### BOUNDARIES # example with sp1 (using boundary distinctness) data("sp1") depths(sp1) <- id ~ top + bottom # specify "standard deviation" for boundary thickness # consider a normal curve centered at boundary RV depth # lookup table: ~maximum thickness of boundary distinctness classes, divided by 3 bound.lut <- c('V'=0.5,'A'=2,'C'=5,'G'=15,'D'=45) / 3 ## V A C G D ## 0.1666667 0.6666667 1.6666667 5.0000000 15.0000000 sp1$bound_sd <- bound.lut[sp1$bound_distinct] # hold any NA boundary distinctness constant sp1$bound_sd[is.na(sp1$bound_sd)] <- 0 quantile(sp1$bound_sd, na.rm = TRUE) p <- sp1[3] # assume boundary sd is 1/12 midpoint of horizon depth # (i.e. general relationship: SD increases (less well known) with depth) sp1 <- transform(sp1, midpt = (bottom - top) / 2 + top, bound_sd = midpt / 12) quantile(sp1$bound_sd) perturb(p, boundary.attr = "bound_sd", n = 10) ### Custom IDs ids <- sprintf("%s-%03d", profile_id(p), 1:10) perturb(p, boundary.attr = "bound_sd", id = ids)
Convert pH to/from Reaction Classes
ph_to_rxnclass(x, halfclass = FALSE, as.is = FALSE, droplevels = TRUE) rxnclass_to_ph(x, halfclass = FALSE, digits = 2, simplify = TRUE) ReactionClassLevels(halfclass = FALSE, as.is = FALSE)
ph_to_rxnclass(x, halfclass = FALSE, as.is = FALSE, droplevels = TRUE) rxnclass_to_ph(x, halfclass = FALSE, digits = 2, simplify = TRUE) ReactionClassLevels(halfclass = FALSE, as.is = FALSE)
x |
input pH values (numeric; |
halfclass |
Split the standard classes in half for higher resolution? Default: |
as.is |
logical. Should character vectors be converted to factors? Default: |
droplevels |
logical. Drop unused levels in factors? Default: |
digits |
Number of digits after decimal place; Default: |
simplify |
Simplify list result to numeric vector when length of result is 1? Default: |
ph_to_rxnclass()
: a vector of reaction classes corresponding to numeric input in x
; if as.is=FALSE
an ordered factor using ReactionClassLevels()
rxnclass_to_ph()
: a list of data.frame objects containing high/low values of reaction class 1:1 with input; if simplify=TRUE and input is a data.frame.
ReactionClassLevels()
: ordered factor containing descriptive terms for reaction classes
ph_to_rxnclass(6.2) rxnclass_to_ph("slightly acid") rxnclass_to_ph(list(c("Slightly Acid", NA, "Moderately Acid"), c("Slightly Acid", NA, "Strongly Acid")), simplify = FALSE) ReactionClassLevels()
ph_to_rxnclass(6.2) rxnclass_to_ph("slightly acid") rxnclass_to_ph(list(c("Slightly Acid", NA, "Moderately Acid"), c("Slightly Acid", NA, "Strongly Acid")), simplify = FALSE) ReactionClassLevels()
Plot pair-wise distances between individuals as line segments.
plot_distance_graph(D, idx = 1:dim(as.matrix((D)))[1])
plot_distance_graph(D, idx = 1:dim(as.matrix((D)))[1])
D |
distance matrix, should be of class 'dist' or compatible class |
idx |
an integer sequence defining which individuals should be compared |
By default all individuals are plotting on the same axis. When there are more than about 10 individuals, the plot can become quite messy. See examples below for ideas.
No value is returned.
Dylan E Beaudette
https://casoilresource.lawr.ucdavis.edu/
data(sp2) depths(sp2) <- id ~ top + bottom d <- NCSP( sp2, vars = c('prop', 'field_ph', 'hue', 'value'), maxDepth = 100, k = 0.01 ) par(mfcol=c(3,1), mar=c(2.5,4.5,1,1)) plot_distance_graph(d, idx=1:6) plot_distance_graph(d, idx=7:12) plot_distance_graph(d, idx=12:18)
data(sp2) depths(sp2) <- id ~ top + bottom d <- NCSP( sp2, vars = c('prop', 'field_ph', 'hue', 'value'), maxDepth = 100, k = 0.01 ) par(mfcol=c(3,1), mar=c(2.5,4.5,1,1)) plot_distance_graph(d, idx=1:6) plot_distance_graph(d, idx=7:12) plot_distance_graph(d, idx=12:18)
Lattice visualization demonstrating subtractive mixtures of colors in Munsell notation and associated spectra.
plotColorMixture( x, w = rep(1, times = length(x))/length(x), mixingMethod = c("exact", "reference"), n = 1, swatch.cex = 1.5, label.cex = 0.85, showMixedSpec = FALSE, overlapFix = TRUE )
plotColorMixture( x, w = rep(1, times = length(x))/length(x), mixingMethod = c("exact", "reference"), n = 1, swatch.cex = 1.5, label.cex = 0.85, showMixedSpec = FALSE, overlapFix = TRUE )
x |
vector of colors in Munsell notation, should not contain duplicates |
w |
vector of weights, can sum to any number |
mixingMethod |
approach used to simulate a mixture:
|
n |
number of closest mixture candidates when |
swatch.cex |
scaling factor for color swatch rectangle width and height, relative to |
label.cex |
scaling factor for swatch labels |
showMixedSpec |
show weighted geometric mean (mixed) spectra as dotted line (only when |
overlapFix |
attempt to "fix" overlapping chip labels via |
If present, names
attribute of x
is used for the figure legend. See the expanded tutorial for examples.
a lattice
graphics object
D.E. Beaudette
This function creates a visualization of the output from colorQuantiles
using lattice graphics.
plotColorQuantiles(res, pt.cex = 7, lab.cex = 0.66)
plotColorQuantiles(res, pt.cex = 7, lab.cex = 0.66)
res |
list returned by |
pt.cex |
scaling factor for color chips |
lab.cex |
chip label scaling factor |
Marginal percentiles and L1 median CIELAB values from colorQuantiles()
are combined into a single plot, arranged in panels according to L, A, and B coordinates. Munsell "chips" (colors and labels) are based on the closest Munsell color found via col2Munsell()
.
a lattice
graphics object
D.E. Beaudette
SoilProfileCollection
ObjectsPlot Multiple SoilProfileCollection
Objects
plotMultipleSPC( spc.list, group.labels, args = rep(list(NA), times = length(spc.list)), merged.legend = NULL, merged.colors = c("#5E4FA2", "#3288BD", "#66C2A5", "#ABDDA4", "#E6F598", "#FEE08B", "#FDAE61", "#F46D43", "#D53E4F", "#9E0142"), merged.legend.title = merged.legend, arrow.offset = 2, bracket.base.depth = 95, label.offset = 2, label.cex = 0.75, ... )
plotMultipleSPC( spc.list, group.labels, args = rep(list(NA), times = length(spc.list)), merged.legend = NULL, merged.colors = c("#5E4FA2", "#3288BD", "#66C2A5", "#ABDDA4", "#E6F598", "#FEE08B", "#FDAE61", "#F46D43", "#D53E4F", "#9E0142"), merged.legend.title = merged.legend, arrow.offset = 2, bracket.base.depth = 95, label.offset = 2, label.cex = 0.75, ... )
spc.list |
a list of |
group.labels |
a vector of group labels, one for each
|
args |
a list of arguments passed to |
merged.legend |
name of a horizon level attribute from which to create thematic sketches and merged legend |
merged.colors |
vector of colors used to create thematic sketches from a shared horizon level attribute |
merged.legend.title |
legend title |
arrow.offset |
vertical offset in depth from base of start / end profiles and group bracket arrows |
bracket.base.depth |
baseline depth used for group brackets |
label.offset |
vertical offset of group labels from baseline |
label.cex |
label size |
... |
additional arguments to the first call to |
Combine multiple SoilProfileCollection
objects into a single profile sketch,
with annotated groups.
See examples below for usage.
For thematic sketches, use the merged.legend
argument instead of color
argument to plotSPC
D.E. Beaudette and Ben Marshall
## ## Simple Example ## # using default arguments to plotSPC() # load sample data data(sp3) data(sp4) # promote to SoilProfileCollection depths(sp3) <- id ~ top + bottom depths(sp4) <- id ~ top + bottom # combine into a list spc.list <- list(sp3, sp4) # argument list arg.list <- list( list(name='name', id.style='top'), list(name='name', id.style='side') ) # plot multiple SPC objects, # with list of named arguments for each call to plotSPC par(mar=c(1,1,3,3)) plotMultipleSPC( spc.list, group.labels = c('Collection 1', 'Collection 2'), args = arg.list, bracket.base.depth = 120, label.cex = 1 ) # specify a different max.depth plotMultipleSPC( spc.list, group.labels = c('Collection 1', 'Collection 2'), args = arg.list, bracket.base.depth = 120, label.cex = 1, max.depth = 250 ) ## ## Merged Legend Example ## # merged legend based on hz attribute 'clay' # reset sample data data(sp3) data(sp4) # promote to SoilProfileCollection depths(sp3) <- id ~ top + bottom depths(sp4) <- id ~ top + bottom # combine into a list spc.list <- list(sp3, sp4) # argument list arg.list <- list( list(name='name', id.style='top'), list(name='name', id.style='side') ) par(mar=c(1,1,3,3)) plotMultipleSPC( spc.list, group.labels = c('Collection 1', 'Collection 2'), args = arg.list, label.cex = 1, merged.legend = 'clay', merged.legend.title = 'Clay (%)' ) ## ## Complex Merged Legend Example ## # create a merged legend from "clay" in sp4 and jacobs2000 # use "soil_color" from sp3 # reset sample data data(sp3) data(sp4) data(jacobs2000) # promote to SoilProfileCollection depths(sp3) <- id ~ top + bottom depths(sp4) <- id ~ top + bottom # remove 'clay' column from sp3 sp3$clay <- NULL # combine into a list spc.list <- list(sp3, sp4, jacobs2000) # try some variations on the default arguments # `clay` is missing in the first SPC, safe to specify another column for colors arg.list <- list( list(color = 'soil_color', id.style='top', name = NA, width = 0.3, hz.depths = TRUE), list(name='name', id.style='side', name.style = 'center-center'), list(name='name', id.style='side', name.style = 'left-center', hz.depths = TRUE) ) par(mar=c(1,1,3,3)) plotMultipleSPC( spc.list, group.labels = c('sp3', 'sp4', 'jacobs2000'), label.offset = 3, args = arg.list, merged.legend = 'clay', merged.legend.title = 'Clay (%)', depth.axis = list(line = 0) )
## ## Simple Example ## # using default arguments to plotSPC() # load sample data data(sp3) data(sp4) # promote to SoilProfileCollection depths(sp3) <- id ~ top + bottom depths(sp4) <- id ~ top + bottom # combine into a list spc.list <- list(sp3, sp4) # argument list arg.list <- list( list(name='name', id.style='top'), list(name='name', id.style='side') ) # plot multiple SPC objects, # with list of named arguments for each call to plotSPC par(mar=c(1,1,3,3)) plotMultipleSPC( spc.list, group.labels = c('Collection 1', 'Collection 2'), args = arg.list, bracket.base.depth = 120, label.cex = 1 ) # specify a different max.depth plotMultipleSPC( spc.list, group.labels = c('Collection 1', 'Collection 2'), args = arg.list, bracket.base.depth = 120, label.cex = 1, max.depth = 250 ) ## ## Merged Legend Example ## # merged legend based on hz attribute 'clay' # reset sample data data(sp3) data(sp4) # promote to SoilProfileCollection depths(sp3) <- id ~ top + bottom depths(sp4) <- id ~ top + bottom # combine into a list spc.list <- list(sp3, sp4) # argument list arg.list <- list( list(name='name', id.style='top'), list(name='name', id.style='side') ) par(mar=c(1,1,3,3)) plotMultipleSPC( spc.list, group.labels = c('Collection 1', 'Collection 2'), args = arg.list, label.cex = 1, merged.legend = 'clay', merged.legend.title = 'Clay (%)' ) ## ## Complex Merged Legend Example ## # create a merged legend from "clay" in sp4 and jacobs2000 # use "soil_color" from sp3 # reset sample data data(sp3) data(sp4) data(jacobs2000) # promote to SoilProfileCollection depths(sp3) <- id ~ top + bottom depths(sp4) <- id ~ top + bottom # remove 'clay' column from sp3 sp3$clay <- NULL # combine into a list spc.list <- list(sp3, sp4, jacobs2000) # try some variations on the default arguments # `clay` is missing in the first SPC, safe to specify another column for colors arg.list <- list( list(color = 'soil_color', id.style='top', name = NA, width = 0.3, hz.depths = TRUE), list(name='name', id.style='side', name.style = 'center-center'), list(name='name', id.style='side', name.style = 'left-center', hz.depths = TRUE) ) par(mar=c(1,1,3,3)) plotMultipleSPC( spc.list, group.labels = c('sp3', 'sp4', 'jacobs2000'), label.offset = 3, args = arg.list, merged.legend = 'clay', merged.legend.title = 'Clay (%)', depth.axis = list(line = 0) )
Generate a diagram of soil profile sketches from a SoilProfileCollection
object. The Introduction to SoilProfileCollection Objects Vignette contains many examples and discussion of the large number of arguments to this function. The Soil Profile Sketches tutorial has longer-form discussion and examples pertaining to suites of related arguments.
Options can be used to conveniently specify sets of arguments that will be used in several calls to plotSPC()
within a single R session. For example, arguments can be specified in a named list (.a
) and set using: options(.aqp.plotSPC.args = .a)
. Reset these options via options(.aqp.plotSPC.args = NULL)
. Arguments explicitly passed to plotSPC()
will override arguments set via options()
.
plotSPC( x, color = "soil_color", width = ifelse(length(x) < 2, 0.15, 0.25), name = hzdesgnname(x), name.style = "right-center", label = idname(x), raggedBottom = NULL, hz.depths = FALSE, hz.depths.offset = ifelse(fixLabelCollisions, 0.03, 0), hz.depths.lines = fixLabelCollisions, depth.axis = list(style = "traditional", cex = cex.names * 1.15), alt.label = NULL, alt.label.col = "black", cex.names = 0.5, cex.id = cex.names + (0.2 * cex.names), font.id = 2, srt.id = 0, print.id = TRUE, id.style = "auto", plot.order = 1:length(x), relative.pos = 1:length(x), add = FALSE, scaling.factor = 1, y.offset = rep(0, times = length(x)), x.idx.offset = 0, n = length(x), max.depth = ifelse(is.infinite(max(x)), 200, max(x)), n.depth.ticks = 10, shrink = FALSE, shrink.cutoff = 3, shrink.thin = NULL, abbr = FALSE, abbr.cutoff = 5, divide.hz = TRUE, hz.distinctness.offset = NULL, hz.topography.offset = NULL, hz.boundary.lty = NULL, density = NULL, show.legend = TRUE, col.label = color, col.palette = c("#5E4FA2", "#3288BD", "#66C2A5", "#ABDDA4", "#E6F598", "#FEE08B", "#FDAE61", "#F46D43", "#D53E4F", "#9E0142"), col.palette.bias = 1, col.legend.cex = 1, n.legend = 8, lwd = 1, lty = 1, default.color = grey(0.95), fixLabelCollisions = hz.depths, fixOverlapArgs = list(method = "E", q = 1), cex.depth.axis = cex.names, axis.line.offset = -2, plot.depth.axis = TRUE, ... ) ## S4 method for signature 'SoilProfileCollection' plot(x, y, ...)
plotSPC( x, color = "soil_color", width = ifelse(length(x) < 2, 0.15, 0.25), name = hzdesgnname(x), name.style = "right-center", label = idname(x), raggedBottom = NULL, hz.depths = FALSE, hz.depths.offset = ifelse(fixLabelCollisions, 0.03, 0), hz.depths.lines = fixLabelCollisions, depth.axis = list(style = "traditional", cex = cex.names * 1.15), alt.label = NULL, alt.label.col = "black", cex.names = 0.5, cex.id = cex.names + (0.2 * cex.names), font.id = 2, srt.id = 0, print.id = TRUE, id.style = "auto", plot.order = 1:length(x), relative.pos = 1:length(x), add = FALSE, scaling.factor = 1, y.offset = rep(0, times = length(x)), x.idx.offset = 0, n = length(x), max.depth = ifelse(is.infinite(max(x)), 200, max(x)), n.depth.ticks = 10, shrink = FALSE, shrink.cutoff = 3, shrink.thin = NULL, abbr = FALSE, abbr.cutoff = 5, divide.hz = TRUE, hz.distinctness.offset = NULL, hz.topography.offset = NULL, hz.boundary.lty = NULL, density = NULL, show.legend = TRUE, col.label = color, col.palette = c("#5E4FA2", "#3288BD", "#66C2A5", "#ABDDA4", "#E6F598", "#FEE08B", "#FDAE61", "#F46D43", "#D53E4F", "#9E0142"), col.palette.bias = 1, col.legend.cex = 1, n.legend = 8, lwd = 1, lty = 1, default.color = grey(0.95), fixLabelCollisions = hz.depths, fixOverlapArgs = list(method = "E", q = 1), cex.depth.axis = cex.names, axis.line.offset = -2, plot.depth.axis = TRUE, ... ) ## S4 method for signature 'SoilProfileCollection' plot(x, y, ...)
x |
a |
color |
quoted column name containing R-compatible color descriptions, or numeric / categorical data to be displayed thematically; see details |
width |
scaling of profile widths (typically 0.1 - 0.4) |
name |
quoted column name of the (horizon-level) attribute containing horizon designations or labels, if missing |
name.style |
one of several possible horizon designations labeling styles: |
label |
quoted column name of the (site-level) attribute used to identify profile sketches |
raggedBottom |
either quoted column name of the (site-level) attribute (logical) used to mark profiles with a truncated lower boundary, or |
hz.depths |
logical, annotate horizon top depths to the right of each sketch ( |
hz.depths.offset |
numeric, user coordinates for left-right adjustment for horizon depth annotation; reasonable values are usually within 0.01-0.05 (default: 0) |
hz.depths.lines |
logical, draw segments between horizon depth labels and actual horizon depth; this is useful when including horizon boundary distinctness and/or |
depth.axis |
logical or list. Use a logical to suppress (
|
alt.label |
quoted column name of the (site-level) attribute used for secondary annotation |
alt.label.col |
color used for secondary annotation text |
cex.names |
baseline character scaling applied to all text labels |
cex.id |
character scaling applied to |
font.id |
font style applied to |
srt.id |
rotation applied to |
print.id |
logical, print |
id.style |
|
plot.order |
integer vector describing the order in which individual soil profiles should be plotted |
relative.pos |
vector of relative positions along the x-axis, within {1, n}, ignores |
add |
logical, add to an existing figure |
scaling.factor |
vertical scaling of profile depths, useful for adding profiles to an existing figure |
y.offset |
numeric vector of vertical offset for top of profiles in depth units of |
x.idx.offset |
integer specifying horizontal offset from 0 (left-hand edge) |
n |
integer describing amount of space along x-axis to allocate, defaults to |
max.depth |
numeric. The lower depth for all sketches, deeper profiles are truncated at this depth. Use larger values to arbitrarily extend the vertical dimension, convenient for leaving extract space for annotation. |
n.depth.ticks |
suggested number of ticks in depth scale |
shrink |
logical, reduce character scaling for 'long' horizon by 80% |
shrink.cutoff |
character length defining 'long' horizon names |
shrink.thin |
integer, horizon thickness threshold for shrinking horizon names by 80%, only activated when |
abbr |
logical, abbreviate |
abbr.cutoff |
suggested minimum length for abbreviated |
divide.hz |
logical, divide horizons with line segment? ( |
hz.distinctness.offset |
|
hz.topography.offset |
|
hz.boundary.lty |
quoted column name (horizon-level attribute) containing line style (integers) used to encode horizon topography |
density |
fill density used for horizon color shading, either a single integer or a quoted column name (horizon-level attribute) containing integer values (default is |
show.legend |
logical, show legend? (default is |
col.label |
thematic legend title |
col.palette |
color palette used for thematic sketches (default is |
col.palette.bias |
color ramp bias (skew), see |
col.legend.cex |
scaling of thematic legend |
n.legend |
approximate number of classes used in numeric legend, max number of items per row in categorical legend |
lwd |
line width multiplier used for sketches |
lty |
line style used for sketches |
default.color |
default horizon fill color used when |
fixLabelCollisions |
use |
fixOverlapArgs |
a named list of arguments to |
cex.depth.axis |
(deprecated, use |
axis.line.offset |
(deprecated, use |
plot.depth.axis |
(deprecated, use |
... |
other arguments passed into lower level plotting functions |
y |
(not used) |
Depth limits (max.depth
) and number of depth ticks (n.depth.ticks
) are suggestions to the pretty()
function. You may have to tinker with both parameters to get what you want.
The 'side' id.style
is useful when plotting a large collection of profiles, and/or, when profile IDs are long.
If the column containing horizon designations is not specified (the name
argument), a column (presumed to contain horizon designation labels) is guessed based on regular expression matching of the pattern 'name'–this usually works, but it is best to manual specify the name of the column containing horizon designations.
The color
argument can either name a column containing R-compatible colors, possibly created via munsell2rgb()
, or column containing either numeric or categorical (either factor or character) values. In the second case, values are converted into colors and displayed along with a simple legend above the plot. Note that this functionality makes several assumptions about plot geometry and is most useful in an interactive setting.
Adjustments to the legend can be specified via col.label
(legend title), col.palette
(palette of colors, automatically expanded), col.legend.cex
(legend scaling), and n.legend
(approximate number of classes for numeric variables, or, maximum number of legend items per row for categorical variables). Currently, plotSPC
will only generate two rows of legend items. Consider reducing the number of classes if two rows isn't enough room.
Profile sketches can be added according to relative positions along the x-axis (vs. integer sequence) via relative.pos
argument. This should be a vector of positions within {1,n} that are used for horizontal placement. Default values are 1:length(x)
. Care must be taken when both plot.order
and relative.pos
are used simultaneously: relative.pos
specifies horizontal placement after sorting. addDiagnosticBracket()
and addVolumeFraction()
use the relative.pos
values for subsequent annotation.
Relative positions that are too close will result in overplotting of sketches. Adjustments to relative positions such that overlap is minimized can be performed with fixOverlap(pos)
, where pos
is the original vector of relative positions.
The x.idx.offset
argument can be used to shift a collection of pedons from left to right in the figure. This can be useful when plotting several different SoilProfileCollection
objects within the same figure. Space must be pre-allocated in the first plotting call, with an offset specified in the second call. See examples below.
Horizon depths (e.g. cm) are converted to figure y-coordinates via: y = (depth * scaling.factor) + y.offset.
A new plot of soil profiles is generated, or optionally added to an existing plot.
D.E. Beaudette
Beaudette, D.E., Roudier P., and A.T. O'Geen. 2013. Algorithms for Quantitative Pedology: A Toolkit for Soil Scientists. Computers & Geosciences. 52:258 - 268.
fixOverlap()
, explainPlotSPC()
, SoilProfileCollection, pretty()
, hzDistinctnessCodeToOffset()
, addBracket()
, profileGroupLabels()
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # example data data(sp1) # usually best to adjust margins par(mar = c(0,0,3,0)) # add color vector sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom # init horizon designation hzdesgnname(sp1) <- 'name' # plot profiles plotSPC(sp1, id.style = 'side') # title, note line argument: title('Sample Data 1', line = 1, cex.main = 0.75) # plot profiles without horizon-line divisions plotSPC(sp1, divide.hz = FALSE) # diagonal lines encode horizon boundary distinctness sp1$hzD <- hzDistinctnessCodeToOffset(sp1$bound_distinct) plotSPC(sp1, hz.distinctness.offset = 'hzD', name.style = 'center-center') # plot horizon color according to some property data(sp4) depths(sp4) <- id ~ top + bottom hzdesgnname(sp4) <- 'name' plotSPC(sp4, color = 'clay') # another example data(sp2) depths(sp2) <- id ~ top + bottom hzdesgnname(sp2) <- 'name' site(sp2) <- ~ surface # some of these profiles are very deep, truncate plot at 400cm # label / re-order with site-level attribute: `surface` plotSPC(sp2, label = 'surface', plot.order = order(sp2$surface), max.depth = 400) # example using a categorical attribute plotSPC(sp2, color = "plasticity", max.depth = 400) # plot two SPC objects in the same figure par(mar = c(1,1,1,1)) # plot the first SPC object and # allocate space for the second SPC object plotSPC(sp1, n = length(sp1) + length(sp2)) # plot the second SPC, starting from the first empty space plotSPC(sp2, x.idx.offset = length(sp1), add = TRUE) ## ## demonstrate horizon designation shrinkage ## data("jacobs2000") # shrink "long" horizon names plotSPC( jacobs2000, name = 'name', name.style = 'center-center', shrink = TRUE, cex.names = 0.8 ) # shrink horizon names in "thin" horizons plotSPC( jacobs2000, name = 'name', name.style = 'center-center', shrink = TRUE, shrink.thin = 15, cex.names = 0.8, ) ## ## demonstrate adaptive legend ## data(sp3) depths(sp3) <- id ~ top + bottom # make some fake categorical data horizons(sp3)$fake.data <- sample(letters[1:15], size = nrow(sp3), replace=TRUE) # better margins par(mar=c(0,0,3,1)) # note that there are enough colors for 15 classes (vs. previous limit of 10) # note that the legend is split into 2 rows when length(classes) > n.legend argument plotSPC(sp3, color='fake.data', name='fake.data', cex.names=0.8) # make enough room in a single legend row plotSPC(sp3, color='fake.data', name='fake.data', cex.names=0.8, n.legend=15) ## ## demonstrate y.offset argument ## must be of length 1 or length(x) ## # example data and local copy data("jacobs2000") x <- jacobs2000 hzdesgnname(x) <- 'name' # y-axis offsets, simulating a elevation along a hillslope sequence # same units as horizon depths in `x` # same order as profiles in `x` y.offset <- c(-5, -10, 22, 65, 35, 15, 12) par(mar = c(0, 0, 2, 2)) # y-offset at 0 plotSPC(x, color = 'matrix_color', cex.names = 0.66) # constant adjustment to y-offset plotSPC(x, color = 'matrix_color', cex.names = 0.66, y.offset = 50) # attempt using invalid y.offset # warning issued and default value of '0' used # plotSPC(x, color = 'matrix_color', cex.names = 0.66, y.offset = 1:2) # variable y-offset # fix overlapping horizon depth labels par(mar = c(0, 0, 1, 0)) plotSPC( x, y.offset = y.offset, color = 'matrix_color', cex.names = 0.75, shrink = TRUE, hz.depths = TRUE, hz.depths.offset = 0.05, fixLabelCollisions = TRUE, name.style = 'center-center' ) # random y-axis offsets yoff <- runif(n = length(x), min = 1, max = 100) # random gradient of x-positions xoff <- runif(n = length(x), min = 1, max = length(x)) # note profiles overlap plotSPC(x, relative.pos = xoff, y.offset = yoff, color = 'matrix_color', cex.names = 0.66, hz.depths = TRUE, name.style = 'center-center' ) # align / adjust relative x positions set.seed(111) pos <- alignTransect(xoff, x.min = 1, x.max = length(x), thresh = 0.65) # y-offset is automatically re-ordered according to # plot.order par(mar = c(0.5, 0.5, 0.5, 0.5)) plotSPC(x, plot.order = pos$order, relative.pos = pos$relative.pos, y.offset = yoff, color = 'matrix_color', cex.names = 0.66, hz.depths = TRUE, name.style = 'center-center' ) box()
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # example data data(sp1) # usually best to adjust margins par(mar = c(0,0,3,0)) # add color vector sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom # init horizon designation hzdesgnname(sp1) <- 'name' # plot profiles plotSPC(sp1, id.style = 'side') # title, note line argument: title('Sample Data 1', line = 1, cex.main = 0.75) # plot profiles without horizon-line divisions plotSPC(sp1, divide.hz = FALSE) # diagonal lines encode horizon boundary distinctness sp1$hzD <- hzDistinctnessCodeToOffset(sp1$bound_distinct) plotSPC(sp1, hz.distinctness.offset = 'hzD', name.style = 'center-center') # plot horizon color according to some property data(sp4) depths(sp4) <- id ~ top + bottom hzdesgnname(sp4) <- 'name' plotSPC(sp4, color = 'clay') # another example data(sp2) depths(sp2) <- id ~ top + bottom hzdesgnname(sp2) <- 'name' site(sp2) <- ~ surface # some of these profiles are very deep, truncate plot at 400cm # label / re-order with site-level attribute: `surface` plotSPC(sp2, label = 'surface', plot.order = order(sp2$surface), max.depth = 400) # example using a categorical attribute plotSPC(sp2, color = "plasticity", max.depth = 400) # plot two SPC objects in the same figure par(mar = c(1,1,1,1)) # plot the first SPC object and # allocate space for the second SPC object plotSPC(sp1, n = length(sp1) + length(sp2)) # plot the second SPC, starting from the first empty space plotSPC(sp2, x.idx.offset = length(sp1), add = TRUE) ## ## demonstrate horizon designation shrinkage ## data("jacobs2000") # shrink "long" horizon names plotSPC( jacobs2000, name = 'name', name.style = 'center-center', shrink = TRUE, cex.names = 0.8 ) # shrink horizon names in "thin" horizons plotSPC( jacobs2000, name = 'name', name.style = 'center-center', shrink = TRUE, shrink.thin = 15, cex.names = 0.8, ) ## ## demonstrate adaptive legend ## data(sp3) depths(sp3) <- id ~ top + bottom # make some fake categorical data horizons(sp3)$fake.data <- sample(letters[1:15], size = nrow(sp3), replace=TRUE) # better margins par(mar=c(0,0,3,1)) # note that there are enough colors for 15 classes (vs. previous limit of 10) # note that the legend is split into 2 rows when length(classes) > n.legend argument plotSPC(sp3, color='fake.data', name='fake.data', cex.names=0.8) # make enough room in a single legend row plotSPC(sp3, color='fake.data', name='fake.data', cex.names=0.8, n.legend=15) ## ## demonstrate y.offset argument ## must be of length 1 or length(x) ## # example data and local copy data("jacobs2000") x <- jacobs2000 hzdesgnname(x) <- 'name' # y-axis offsets, simulating a elevation along a hillslope sequence # same units as horizon depths in `x` # same order as profiles in `x` y.offset <- c(-5, -10, 22, 65, 35, 15, 12) par(mar = c(0, 0, 2, 2)) # y-offset at 0 plotSPC(x, color = 'matrix_color', cex.names = 0.66) # constant adjustment to y-offset plotSPC(x, color = 'matrix_color', cex.names = 0.66, y.offset = 50) # attempt using invalid y.offset # warning issued and default value of '0' used # plotSPC(x, color = 'matrix_color', cex.names = 0.66, y.offset = 1:2) # variable y-offset # fix overlapping horizon depth labels par(mar = c(0, 0, 1, 0)) plotSPC( x, y.offset = y.offset, color = 'matrix_color', cex.names = 0.75, shrink = TRUE, hz.depths = TRUE, hz.depths.offset = 0.05, fixLabelCollisions = TRUE, name.style = 'center-center' ) # random y-axis offsets yoff <- runif(n = length(x), min = 1, max = 100) # random gradient of x-positions xoff <- runif(n = length(x), min = 1, max = length(x)) # note profiles overlap plotSPC(x, relative.pos = xoff, y.offset = yoff, color = 'matrix_color', cex.names = 0.66, hz.depths = TRUE, name.style = 'center-center' ) # align / adjust relative x positions set.seed(111) pos <- alignTransect(xoff, x.min = 1, x.max = length(x), thresh = 0.65) # y-offset is automatically re-ordered according to # plot.order par(mar = c(0.5, 0.5, 0.5, 0.5)) plotSPC(x, plot.order = pos$order, relative.pos = pos$relative.pos, y.offset = yoff, color = 'matrix_color', cex.names = 0.66, hz.depths = TRUE, name.style = 'center-center' ) box()
Preview colors arranged according to CIE2000 distances or manual specification.
previewColors( cols, method = c("grid", "MDS", "manual"), labels = NULL, labels.cex = 1, col.order = NULL, nrow = ceiling(sqrt(length(cols))), ncol = nrow, border.col = "black", pt.cex = 2, pt.pch = 15 )
previewColors( cols, method = c("grid", "MDS", "manual"), labels = NULL, labels.cex = 1, col.order = NULL, nrow = ceiling(sqrt(length(cols))), ncol = nrow, border.col = "black", pt.cex = 2, pt.pch = 15 )
cols |
vector of R colors |
method |
either "grid", "MDS", or "manual", see details |
labels |
optional vector of labels, disabled when |
labels.cex |
scaling factor for labels |
col.order |
integer vector used to order colors |
nrow |
number of rows used by "grid" method |
ncol |
number of columns used by "grid" method |
border.col |
border color used by "grid" method |
pt.cex |
point scaling factor used by "MDS" method |
pt.pch |
point symbol used by "MDS" method |
Color sorting is based on CIE2000 distances as calculated by farver::compare_colour()
. The "grid" method arranges colors in a rectangular grid with ordering based on divisive hierarchical clustering of the pair-wise distances. Unique colors are used when cols
contains more than 5,000 colors.
The "MDS" method arranges unique colors via classical multidimensional scaling (principal coordinates) via cmdscale()
.
Colors can be manually arranged by supplying a vector of integers to col.order
and setting method='manual'
.
When method = "grid" or "manual"
a vector of color order is returned. When method = "MDS"
, the output from MASS::cmdscale
.
D.E. Beaudette
# example data data(sp2) # convert into SoilProfileCollection object depths(sp2) <- id ~ top + bottom previewColors(sp2$soil_color) previewColors(sp2$soil_color, method = 'MDS', pt.cex = 3) # create colors using HCL space cols.hcl <- hcl(h = 0:360, c = 100, l = 50) # grid, colors sorted by dE00 previewColors(cols.hcl) # manual specification previewColors(cols.hcl, method = 'manual', col.order = 1:361) # MDS previewColors(cols.hcl, method = 'MDS', pt.cex = 1)
# example data data(sp2) # convert into SoilProfileCollection object depths(sp2) <- id ~ top + bottom previewColors(sp2$soil_color) previewColors(sp2$soil_color, method = 'MDS', pt.cex = 3) # create colors using HCL space cols.hcl <- hcl(h = 0:360, c = 100, l = 50) # grid, colors sorted by dE00 previewColors(cols.hcl) # manual specification previewColors(cols.hcl, method = 'manual', col.order = 1:361) # MDS previewColors(cols.hcl, method = 'MDS', pt.cex = 1)
prj()
: Get Coordinate Reference System (Projection) metadata
prj()<-
: Set Coordinate Reference System metadata for the SoilProfileCollection
proj4string()
: (Deprecated) Get Coordinate Reference System as PROJ4 String
proj4string()<-
: (Deprecated) Set Coordinate Reference System metadata for the SoilProfileCollection
## S4 method for signature 'SoilProfileCollection' prj(object, ...) ## S4 replacement method for signature 'SoilProfileCollection' prj(object, ...) <- value ## S4 method for signature 'SoilProfileCollection' proj4string(obj) ## S4 replacement method for signature 'SoilProfileCollection' proj4string(obj) <- value
## S4 method for signature 'SoilProfileCollection' prj(object, ...) ## S4 replacement method for signature 'SoilProfileCollection' prj(object, ...) <- value ## S4 method for signature 'SoilProfileCollection' proj4string(obj) ## S4 replacement method for signature 'SoilProfileCollection' proj4string(obj) <- value
object |
A SoilProfileCollection |
... |
Additional arguments (not used) |
value |
character. Representation of Coordinate Reference System as |
obj |
A SoilProfileCollection |
Set vector containing profile IDs
Get or set a vector of profile IDs
## S4 replacement method for signature 'SoilProfileCollection' profile_id(object) <- value ## S4 method for signature 'SoilProfileCollection' profile_id(object)
## S4 replacement method for signature 'SoilProfileCollection' profile_id(object) <- value ## S4 method for signature 'SoilProfileCollection' profile_id(object)
object |
a SoilProfileCollection |
value |
a unique vector of equal length to number of profiles |
Iterate over all profiles in a SoilProfileCollection, calling FUN
on a single-profile SoilProfileCollection for each step.
## S4 method for signature 'SoilProfileCollection' profileApply( object, FUN, simplify = TRUE, frameify = FALSE, chunk.size = 100, column.names = NULL, APPLY.FUN = lapply, ... )
## S4 method for signature 'SoilProfileCollection' profileApply( object, FUN, simplify = TRUE, frameify = FALSE, chunk.size = 100, column.names = NULL, APPLY.FUN = lapply, ... )
object |
a SoilProfileCollection |
FUN |
a function to be applied to each profile within the collection |
simplify |
logical, should the result be simplified to a vector? default: TRUE; see examples |
frameify |
logical, should the result be collapsed into a data.frame? default: FALSE; overrides simplify argument; see examples |
chunk.size |
numeric, size of "chunks" for faster processing of large SoilProfileCollection objects; default: 100 |
column.names |
character, optional character vector to replace frameify-derived column names; should match length of colnames() from FUN result; default: NULL |
APPLY.FUN |
function, optional alternate |
... |
additional arguments passed to FUN |
When simplify is TRUE, a vector of length nrow(object) (horizon data) or of length length(object) (site data). When simplify is FALSE, a list is returned. When frameify is TRUE, a data.frame is returned. An attempt is made to identify idname and/or hzidname in the data.frame result, safely ensuring that IDs are preserved to facilitate merging profileApply result downstream.
data(sp1) depths(sp1) <- id ~ top + bottom # estimate soil depth using horizon designations profileApply(sp1, estimateSoilDepth, name='name') # scale a single property 'prop' in horizon table # scaled = (x - mean(x)) / sd(x) sp1$d <- profileApply(sp1, FUN=function(x) round(scale(x$prop), 2)) plot(sp1, name='d') # compute depth-wise differencing by profile # note that our function expects that the column 'prop' exists f <- function(x) { c(x$prop[1], diff(x$prop)) } sp1$d <- profileApply(sp1, FUN=f) plot(sp1, name='d') # compute depth-wise cumulative sum by profile # note the use of an anonymous function sp1$d <- profileApply(sp1, FUN=function(x) cumsum(x$prop)) plot(sp1, name='d') # compute profile-means, and save to @site # there must be some data in @site for this to work site(sp1) <- ~ group sp1$mean_prop <- profileApply(sp1, FUN=function(x) mean(x$prop, na.rm=TRUE)) # re-plot using ranks defined by computed summaries (in @site) plot(sp1, plot.order=rank(sp1$mean_prop)) ## iterate over profiles, calculate on each horizon, merge into original SPC # example data data(sp1) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # calculate horizon thickness and proportional thickness # returns a data.frame result with multiple attributes per horizon thicknessFunction <- function(p) { hz <- horizons(p) depthnames <- horizonDepths(p) res <- data.frame(profile_id(p), hzID(p), thk=(hz[[depthnames[[2]]]] - hz[[depthnames[1]]])) res$hz_prop <- res$thk / sum(res$thk) colnames(res) <- c(idname(p), hzidname(p), 'hz_thickness', 'hz_prop') return(res) } # list output option with simplify=F, list names are profile_id(sp1) list.output <- profileApply(sp1, thicknessFunction, simplify = FALSE) head(list.output) # data.frame output option with frameify=TRUE df.output <- profileApply(sp1, thicknessFunction, frameify = TRUE) head(df.output) # since df.output contains idname(sp1) and hzidname(sp1), # it can safely be merged by a left-join via horizons<- setter horizons(sp1) <- df.output plot(density(sp1$hz_thickness, na.rm=TRUE), main="Density plot of Horizon Thickness") ## iterate over profiles, subsetting horizon data # example data data(sp1) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # make some fake site data related to a depth of some importance sp1$dep <- profileApply(sp1, function(i) {round(rnorm(n=1, mean=mean(i$top)))}) # custom function for subsetting horizon data, by profile # keep horizons with lower boundary < site-level attribute 'dep' fun <- function(i) { # extract horizons h <- horizons(i) # make an expression to subset horizons exp <- paste('bottom < ', i$dep, sep='') # subset horizons, and write-back into current SPC slot(i, 'horizons') <- subset(h, subset=eval(parse(text=exp))) # return modified SPC return(i) } # list of modified SoilProfileCollection objects l <- profileApply(sp1, fun, simplify=FALSE) # re-combine list of SoilProfileCollection objects into a single SoilProfileCollection sp1.sub <- pbindlist(l) # graphically check par(mfrow=c(2,1), mar=c(0,0,1,0)) plot(sp1) points(1:length(sp1), sp1$dep, col='red', pch=7) plot(sp1.sub)
data(sp1) depths(sp1) <- id ~ top + bottom # estimate soil depth using horizon designations profileApply(sp1, estimateSoilDepth, name='name') # scale a single property 'prop' in horizon table # scaled = (x - mean(x)) / sd(x) sp1$d <- profileApply(sp1, FUN=function(x) round(scale(x$prop), 2)) plot(sp1, name='d') # compute depth-wise differencing by profile # note that our function expects that the column 'prop' exists f <- function(x) { c(x$prop[1], diff(x$prop)) } sp1$d <- profileApply(sp1, FUN=f) plot(sp1, name='d') # compute depth-wise cumulative sum by profile # note the use of an anonymous function sp1$d <- profileApply(sp1, FUN=function(x) cumsum(x$prop)) plot(sp1, name='d') # compute profile-means, and save to @site # there must be some data in @site for this to work site(sp1) <- ~ group sp1$mean_prop <- profileApply(sp1, FUN=function(x) mean(x$prop, na.rm=TRUE)) # re-plot using ranks defined by computed summaries (in @site) plot(sp1, plot.order=rank(sp1$mean_prop)) ## iterate over profiles, calculate on each horizon, merge into original SPC # example data data(sp1) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # calculate horizon thickness and proportional thickness # returns a data.frame result with multiple attributes per horizon thicknessFunction <- function(p) { hz <- horizons(p) depthnames <- horizonDepths(p) res <- data.frame(profile_id(p), hzID(p), thk=(hz[[depthnames[[2]]]] - hz[[depthnames[1]]])) res$hz_prop <- res$thk / sum(res$thk) colnames(res) <- c(idname(p), hzidname(p), 'hz_thickness', 'hz_prop') return(res) } # list output option with simplify=F, list names are profile_id(sp1) list.output <- profileApply(sp1, thicknessFunction, simplify = FALSE) head(list.output) # data.frame output option with frameify=TRUE df.output <- profileApply(sp1, thicknessFunction, frameify = TRUE) head(df.output) # since df.output contains idname(sp1) and hzidname(sp1), # it can safely be merged by a left-join via horizons<- setter horizons(sp1) <- df.output plot(density(sp1$hz_thickness, na.rm=TRUE), main="Density plot of Horizon Thickness") ## iterate over profiles, subsetting horizon data # example data data(sp1) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # make some fake site data related to a depth of some importance sp1$dep <- profileApply(sp1, function(i) {round(rnorm(n=1, mean=mean(i$top)))}) # custom function for subsetting horizon data, by profile # keep horizons with lower boundary < site-level attribute 'dep' fun <- function(i) { # extract horizons h <- horizons(i) # make an expression to subset horizons exp <- paste('bottom < ', i$dep, sep='') # subset horizons, and write-back into current SPC slot(i, 'horizons') <- subset(h, subset=eval(parse(text=exp))) # return modified SPC return(i) } # list of modified SoilProfileCollection objects l <- profileApply(sp1, fun, simplify=FALSE) # re-combine list of SoilProfileCollection objects into a single SoilProfileCollection sp1.sub <- pbindlist(l) # graphically check par(mfrow=c(2,1), mar=c(0,0,1,0)) plot(sp1) points(1:length(sp1), sp1$dep, col='red', pch=7) plot(sp1.sub)
Labels groups of soil profiles within soil profile sketches.
See examples below for ideas.
profileGroupLabels( x0, x1, labels, y0 = 100, y1 = 98, label.offset = 2, label.cex = 0.75 )
profileGroupLabels( x0, x1, labels, y0 = 100, y1 = 98, label.offset = 2, label.cex = 0.75 )
x0 |
integer indices to the first profile within each group |
x1 |
integer indices to the last profile within each group |
labels |
vector of group labels |
y0 |
baseline depth used for group brackets |
y1 |
depth used for start and end markers for group brackets (see examples) |
label.offset |
vertical offset of group labels from baseline |
label.cex |
label size |
This function is typically called by some other convenience function
such as plotMultipleSPC
.
D.E. Beaudette
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # load sample data data(sp3) data(sp4) # convert soil colors sp3$h <- NA ; sp3$s <- NA ; sp3$v <- NA sp3.rgb <- with(sp3, munsell2rgb(hue, value, chroma, return_triplets=TRUE)) sp3[, c('h','s','v')] <- t(with(sp3.rgb, rgb2hsv(r, g, b, maxColorValue=1))) # promote to SoilProfileCollection depths(sp3) <- id ~ top + bottom depths(sp4) <- id ~ top + bottom # combine into a list spc.list <- list(sp3, sp4) # compute group lengths and start/stop locations n.groups <- length(spc.list) spc.lengths <- sapply(spc.list, length) n.pedons <- sum(spc.lengths) group.starts <- c(1, 1 + cumsum(spc.lengths[-n.groups])) group.ends <- cumsum(spc.lengths) # determine depths of first / last profile in each group yy <- unlist(sapply(spc.list, function(i) profileApply(i, max))) tick.heights <- yy[c(group.starts, group.ends)] + 2 # plot 2 SoilProfileCollection objects on the same axis par(mar=c(1,1,1,1)) plotSPC(sp3, n = n.pedons) plotSPC(sp4, add = TRUE, x.idx.offset = group.ends[1], depth.axis = FALSE, id.style = 'side') # annotate groups profileGroupLabels(x0 = group.starts, x1 = group.ends, labels=c('Collection 1', 'Collection 2'), y0=120, y1=tick.heights)
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # load sample data data(sp3) data(sp4) # convert soil colors sp3$h <- NA ; sp3$s <- NA ; sp3$v <- NA sp3.rgb <- with(sp3, munsell2rgb(hue, value, chroma, return_triplets=TRUE)) sp3[, c('h','s','v')] <- t(with(sp3.rgb, rgb2hsv(r, g, b, maxColorValue=1))) # promote to SoilProfileCollection depths(sp3) <- id ~ top + bottom depths(sp4) <- id ~ top + bottom # combine into a list spc.list <- list(sp3, sp4) # compute group lengths and start/stop locations n.groups <- length(spc.list) spc.lengths <- sapply(spc.list, length) n.pedons <- sum(spc.lengths) group.starts <- c(1, 1 + cumsum(spc.lengths[-n.groups])) group.ends <- cumsum(spc.lengths) # determine depths of first / last profile in each group yy <- unlist(sapply(spc.list, function(i) profileApply(i, max))) tick.heights <- yy[c(group.starts, group.ends)] + 2 # plot 2 SoilProfileCollection objects on the same axis par(mar=c(1,1,1,1)) plotSPC(sp3, n = n.pedons) plotSPC(sp4, add = TRUE, x.idx.offset = group.ends[1], depth.axis = FALSE, id.style = 'side') # annotate groups profileGroupLabels(x0 = group.starts, x1 = group.ends, labels=c('Collection 1', 'Collection 2'), y0=120, y1=tick.heights)
A simple index of "information" content associated with individuals in a SoilProfileCollection
object. Information content is quantified by number of bytes after compression via memCompress()
.
profileInformationIndex( x, vars, method = c("joint", "individual"), baseline = FALSE, numericDigits = 8, padNA = FALSE, scaleNumeric = FALSE, compression = "gzip" )
profileInformationIndex( x, vars, method = c("joint", "individual"), baseline = FALSE, numericDigits = 8, padNA = FALSE, scaleNumeric = FALSE, compression = "gzip" )
x |
|
vars |
character vector of site or horizon level attributes to consider |
method |
character, 'individual' or 'joint' complexity |
baseline |
logical, compute ratio to "baseline" information content, see details |
numericDigits |
integer, number of significant digits to retain in numeric -> character conversion |
padNA |
logical, pad depths to |
scaleNumeric |
logical, |
compression |
character, compression method as used by |
Information content via compression (gzip) is the central assumption behind this function: the values associated with a simple soil profile having few horizons and little variation between horizons (isotropic depth-functions) will compress to a much smaller size than a complex profile (many horizons, strong anisotropy). Information content is evaluated a profile at a time, over each site or horizon level attribute specified in vars
. The baseline
argument invokes a comparison to the simplest possible representation of each depth-function:
numeric
: replication of the mean value to match the number of horizons with non-NA values
character
or factor
: replication of the most frequent value to match the number of horizons with non-NA values
The ratios computed against a "simple" baseline represent something like "information gain". Larger baseline ratios suggest more complexity (more information) associated with a soil profile's depth-functions. Alternatively, the total quantity of information (in bytes) can be determined by setting baseline = FALSE
.
a numeric vector of the same length as length(x)
and in the same order, suitable for direct assignment to a new site-level attribute
D.E. Beaudette
# single horizon, constant value p1 <- data.frame(id = 1, top = 0, bottom = 100, p = 5, name = 'H') # multiple horizons, constant value p2 <- data.frame( id = 2, top = c(0, 10, 20, 30, 40, 50), bottom = c(10, 20, 30, 40, 50, 100), p = rep(5, times = 6), name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C') ) # multiple horizons, random values p3 <- data.frame( id = 3, top = c(0, 10, 20, 30, 40, 50), bottom = c(10, 20, 30, 40, 50, 100), p = c(1, 5, 10, 35, 6, 2), name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C') ) # multiple horizons, mostly NA p4 <- data.frame( id = 4, top = c(0, 10, 20, 30, 40, 50), bottom = c(10, 20, 30, 40, 50, 100), p = c(1, NA, NA, NA, NA, NA), name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C') ) # shallower version of p1 p5 <- data.frame(id = 5, top = 0, bottom = 50, p = 5, name = 'H') # combine and upgrade to SPC z <- rbind(p1, p2, p3, p4, p5) depths(z) <- id ~ top + bottom hzdesgnname(z) <- 'name' z <- fillHzGaps(z) # visual check par(mar = c(1, 0, 3, 3)) plotSPC(z, color = 'p', name.style = 'center-center', cex.names = 0.8, max.depth = 110) # factor version of horizon name z$fname <- factor(z$name) vars <- c('p', 'name') # result is total bytes pi <- profileInformationIndex(z, vars = vars, method = 'joint', baseline = FALSE) text(x = 1:5, y = 105, labels = pi, cex = 0.85) mtext('Profile Information Index (bytes)', side = 1, line = -1)
# single horizon, constant value p1 <- data.frame(id = 1, top = 0, bottom = 100, p = 5, name = 'H') # multiple horizons, constant value p2 <- data.frame( id = 2, top = c(0, 10, 20, 30, 40, 50), bottom = c(10, 20, 30, 40, 50, 100), p = rep(5, times = 6), name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C') ) # multiple horizons, random values p3 <- data.frame( id = 3, top = c(0, 10, 20, 30, 40, 50), bottom = c(10, 20, 30, 40, 50, 100), p = c(1, 5, 10, 35, 6, 2), name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C') ) # multiple horizons, mostly NA p4 <- data.frame( id = 4, top = c(0, 10, 20, 30, 40, 50), bottom = c(10, 20, 30, 40, 50, 100), p = c(1, NA, NA, NA, NA, NA), name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C') ) # shallower version of p1 p5 <- data.frame(id = 5, top = 0, bottom = 50, p = 5, name = 'H') # combine and upgrade to SPC z <- rbind(p1, p2, p3, p4, p5) depths(z) <- id ~ top + bottom hzdesgnname(z) <- 'name' z <- fillHzGaps(z) # visual check par(mar = c(1, 0, 3, 3)) plotSPC(z, color = 'p', name.style = 'center-center', cex.names = 0.8, max.depth = 110) # factor version of horizon name z$fname <- factor(z$name) vars <- c('p', 'name') # result is total bytes pi <- profileInformationIndex(z, vars = vars, method = 'joint', baseline = FALSE) text(x = 1:5, y = 105, labels = pi, cex = 0.85) mtext('Profile Information Index (bytes)', side = 1, line = -1)
Quickly assemble a single-profile, SoilProfileCollection
object from two possible templates. This function is a useful shortcut for creating theoretical SoilProfileCollection
objects for testing or demonstrative purposes.
quickSPC( x, id = "id", d = "depths", n = "name", m = "soil_color", interval = 10 )
quickSPC( x, id = "id", d = "depths", n = "name", m = "soil_color", interval = 10 )
x |
either a |
id |
character, specified when |
d |
character, specified when |
n |
character, specified when |
m |
character, specified when |
interval |
numeric, typically an integer and only specified when using character templates in mode 2. See Details. |
The list template for a single SPC allows for full specification of ID, horizon designation, bottom depths, and an arbitrary number of horizon-level attributes. A compact notation is used for profile ID (single value) and horizon depths (bottom depths, assuming datum of 0). Horizon designation and additional data (e.g. clay content) are specified as vectors all of equal length, matching the number of horizons in the profile.
The character template can be provided in one of several formats:
'A-Bt1-Bt2-Bt3-Cr-R'
'ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC'
Format 1 is interpreted as a horizon sequence delimited by '-' or newline character (\n). Random integer thickness are assigned to horizons, and profile ID created via digest::digest(..., algo = 'xxhash32')
. Iteration over templates in this format is automatic when x
is a character vector of length > 1
.
Format 2 is interpreted as a horizon sequence delimited by '|'. Horizon thickness is proportional to replication of horizon designation and scaled by the interval
argument. Profile ID is created via digest::digest(..., algo = 'xxhash32')
. Iteration over templates in this format is automatic when x
is a character vector of length > 1
.
Explicit naming of profile IDs can be accomplished by specifying an ID via prefix, as in "ID:A-Bt1-Bt2-Cr-R" or "ID:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC". Labels specified before a ":" will be interpreted as a profile ID. These labels are optional but if specified must be unique within x
.
Single-horizon profile templates must include a trailing horizon delimiter: '-', '\n', or '|' depending on the format.
SoilProfileCollection
object
# list-based template x <- list( id = 'P1', depths = c(25, 33, 100, 150), name = c('A', 'Bw', 'Bt', 'Cr'), clay = c(12, 15, 22, 25), soil_color = c('10YR 3/3', '10YR 4/4', '10YR 4/6', '5G 6/2') ) s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1) # character template, mode 1 # horizon thickness is generated at random (uniform [5,20]) x <- 'A-Bt1-Bt2-Bt3-Cr-R' s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1) # multiple templates x <- c( 'A-Bt1-Bt2-Bt3-Cr-R', 'A-C1-C2-C3-C4-Ab', 'Ap-A-A/E-E-Bhs-Cr' ) # this interface is vectorized s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1) # optionally specify profile IDs using "ID:" prefix x <- c( 'P1:A-Bt1-Bt2-Bt3-Cr-R', 'P2:A-C1-C2-C3-C4-Ab', 'P3:Ap-A-A/E-E-Bhs-Cr' ) s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1) # optionally specify: # horizon bottom depths in cm # soil color in Munsell notation x <- c( '1. simple:Oe-A-E-Bhs', '2. full:Oe,10,10YR 2/2-A,20,10YR 3/3-E,30,2.5Y 8/2-Bhs,60,7.5YR 4/6' ) s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1) # use newline character as delimiter, more compact x <- 'Oe,10,10YR 2/2 A,20,10YR 3/3 E,30,2.5Y 8/2 Bhs,60,7.5YR 4/6 BC,125,7.5YR 6/4 C,150,10YR 6/2' plotSPC(quickSPC(x), name.style = 'center-center', cex.names = 1) # character template, mode 2 # horizon thickness is proportional to replication of # horizon designation and scaled by 'interval' argument # default of 10 depth units # e.g. A horizon is 3 * 10 = 30 depth units thick. x <- c( 'AAA|BwBwBwBw|CCCCCCC|CdCdCdCd', 'ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC', 'A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR' ) # each horizon label is '10' depth-units (default) s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1, depth.axis = FALSE, hz.depths = TRUE ) # each horizon label is '5' depth-units s <- quickSPC(x, interval = 5) plotSPC(s, name.style = 'center-center', cex.names = 1, depth.axis = FALSE, hz.depths = TRUE ) # optionally specify some / all profile IDs with "ID:" prefix x <- c( 'P1:AAA|BwBwBwBw|CCCCCCC|CdCdCdCd', 'P2:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC', 'A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR' ) s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1, depth.axis = FALSE, hz.depths = TRUE ) # make a NODATA profile, with a random hash ID # note the use of trailing horizon delimiter # note the use of NA soil color field x <- 'NODATA,150,NA-' s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1, depth.axis = FALSE, hz.depths = TRUE)
# list-based template x <- list( id = 'P1', depths = c(25, 33, 100, 150), name = c('A', 'Bw', 'Bt', 'Cr'), clay = c(12, 15, 22, 25), soil_color = c('10YR 3/3', '10YR 4/4', '10YR 4/6', '5G 6/2') ) s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1) # character template, mode 1 # horizon thickness is generated at random (uniform [5,20]) x <- 'A-Bt1-Bt2-Bt3-Cr-R' s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1) # multiple templates x <- c( 'A-Bt1-Bt2-Bt3-Cr-R', 'A-C1-C2-C3-C4-Ab', 'Ap-A-A/E-E-Bhs-Cr' ) # this interface is vectorized s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1) # optionally specify profile IDs using "ID:" prefix x <- c( 'P1:A-Bt1-Bt2-Bt3-Cr-R', 'P2:A-C1-C2-C3-C4-Ab', 'P3:Ap-A-A/E-E-Bhs-Cr' ) s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1) # optionally specify: # horizon bottom depths in cm # soil color in Munsell notation x <- c( '1. simple:Oe-A-E-Bhs', '2. full:Oe,10,10YR 2/2-A,20,10YR 3/3-E,30,2.5Y 8/2-Bhs,60,7.5YR 4/6' ) s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1) # use newline character as delimiter, more compact x <- 'Oe,10,10YR 2/2 A,20,10YR 3/3 E,30,2.5Y 8/2 Bhs,60,7.5YR 4/6 BC,125,7.5YR 6/4 C,150,10YR 6/2' plotSPC(quickSPC(x), name.style = 'center-center', cex.names = 1) # character template, mode 2 # horizon thickness is proportional to replication of # horizon designation and scaled by 'interval' argument # default of 10 depth units # e.g. A horizon is 3 * 10 = 30 depth units thick. x <- c( 'AAA|BwBwBwBw|CCCCCCC|CdCdCdCd', 'ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC', 'A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR' ) # each horizon label is '10' depth-units (default) s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1, depth.axis = FALSE, hz.depths = TRUE ) # each horizon label is '5' depth-units s <- quickSPC(x, interval = 5) plotSPC(s, name.style = 'center-center', cex.names = 1, depth.axis = FALSE, hz.depths = TRUE ) # optionally specify some / all profile IDs with "ID:" prefix x <- c( 'P1:AAA|BwBwBwBw|CCCCCCC|CdCdCdCd', 'P2:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC', 'A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR' ) s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1, depth.axis = FALSE, hz.depths = TRUE ) # make a NODATA profile, with a random hash ID # note the use of trailing horizon delimiter # note the use of NA soil color field x <- 'NODATA,150,NA-' s <- quickSPC(x) plotSPC(s, name.style = 'center-center', cex.names = 1, depth.axis = FALSE, hz.depths = TRUE)
Generate a random soil profile according to set criteria, with correlated depth trends.
The random walk method produces profiles with considerable variation between horizons and is based on values from the normal distribution seeded with means and standard deviations drawn from the uniform distribution of [0, 10].
The logistic power peak (LPP) function can be used to generate random soil property depth functions that are sharply peaked. LPP parameters can be hard-coded using the optional arguments: "lpp.a", "lpp.b", "lpp.u", "lpp.d", "lpp.e". Amplitude of the peak is controlled by ("lpp.a + "lpp.b"), depth of the peak by "lpp.u", and abruptness by "lpp.d" and "lpp.e". Further description of the method is outlined in (Brenton et al, 2011). Simulated horizon distinctness codes are based on the USDA-NCSS field description methods. Simulated distinctness codes are constrained according to horizon thickness, i.e. a gradual boundary (+/- 5cm) will not be simulated for horizons that are thinner than 3x this vertical distance
random_profile( id, n = c(3, 4, 5, 6), min_thick = 5, max_thick = 30, n_prop = 5, exact = FALSE, method = "random_walk", HzDistinctSim = FALSE, SPC = FALSE, ... )
random_profile( id, n = c(3, 4, 5, 6), min_thick = 5, max_thick = 30, n_prop = 5, exact = FALSE, method = "random_walk", HzDistinctSim = FALSE, SPC = FALSE, ... )
id |
a character or numeric id used for this profile |
n |
vector of possible number of horizons, or the exact number of horizons (see below) |
min_thick |
minimum thickness criteria for a simulated horizon |
max_thick |
maximum thickness criteria for a simulated horizon |
n_prop |
number of simulated soil properties (columns in the returned dataframe) |
exact |
should the exact number of requested horizons be generated? (defaults to FALSE) |
method |
named method used to synthesize depth function ('random_walk' or 'LPP'), see details |
HzDistinctSim |
optionally simulate horizon boundary distinctness codes |
SPC |
result is a |
... |
additional parameters passed-in to the LPP ( |
A data.frame
or SoilProfileCollection
object.
See examples for ideas on simulating several profiles at once.
Dylan E. Beaudette
Myers, D. B.; Kitchen, N. R.; Sudduth, K. A.; Miles, R. J.; Sadler, E. J. & Grunwald, S. Peak functions for modeling high resolution soil profile data Geoderma, 2011, 166, 74-83.
profile_compare, hzDistinctnessCodeToOffset
# generate 10 random profiles, result is a list of SoilProfileCollection objects d <- lapply(1:10, random_profile, SPC=TRUE) # combine d <- combine(d) # plot opar <- par(mar=c(0,0,3,2)) plotSPC(d, color='p1', name='name', cex.names=0.75) par(opar) # simulate horizon boundary distinctness codes: d <- lapply(1:10, random_profile, SPC=TRUE, HzDistinctSim=TRUE) d <- combine(d) d$HzD <- hzDistinctnessCodeToOffset(d$HzDistinctCode) opar <- par(mar=c(0,0,3,2)) plotSPC(d, name='name', color='p1', hz.distinctness.offset='HzD') par(opar) # depth functions are generated using the LPP function opar <- par(mfrow=c(2,1), mar=c(0,0,3,0)) # generate data d.1 <- lapply(1:10, random_profile, SPC=TRUE, n=c(6, 7, 8), n_prop=1, method='LPP') d.1 <- combine(d.1) # plot plotSPC(d.1, name='name', color='p1', col.label = 'LPP Defaults') # do this again, this time set all of the LPP parameters d.2 <- lapply(1:10, random_profile, SPC=TRUE, n=c(6, 7, 8), n_prop=1, method='LPP', lpp.a=5, lpp.b=10, lpp.d=5, lpp.e=5, lpp.u=25) d.2 <- combine(d.2) # plot plotSPC(d.2, name='name', color='p1', col.label = 'Custom LPP Parameters') # reset plotting defaults par(opar) # try plotting the LPP-derived simulated data # aggregated over all profiles a <- slab(d.2, fm= ~ p1) a$mid <- with(a, (top + bottom) / 2) library(lattice) (p1 <- xyplot(mid ~ p.q50, data=a, lower=a$p.q25, upper=a$p.q75, ylim=c(150,-5), alpha=0.5, panel=panel.depth_function, prepanel=prepanel.depth_function, cf=a$contributing_fraction, xlab='Simulated Data', ylab='Depth', main='LPP(a=5, b=10, d=5, e=5, u=25)', par.settings=list(superpose.line=list(col='black', lwd=2)) )) # optionally add original data as step-functions if(require(latticeExtra)) { h <- horizons(d.2) p1 + as.layer(xyplot(top ~ p1, groups=id, data=h, horizontal=TRUE, type='S', par.settings=list(superpose.line=list(col='blue', lwd=1, lty=2)))) }
# generate 10 random profiles, result is a list of SoilProfileCollection objects d <- lapply(1:10, random_profile, SPC=TRUE) # combine d <- combine(d) # plot opar <- par(mar=c(0,0,3,2)) plotSPC(d, color='p1', name='name', cex.names=0.75) par(opar) # simulate horizon boundary distinctness codes: d <- lapply(1:10, random_profile, SPC=TRUE, HzDistinctSim=TRUE) d <- combine(d) d$HzD <- hzDistinctnessCodeToOffset(d$HzDistinctCode) opar <- par(mar=c(0,0,3,2)) plotSPC(d, name='name', color='p1', hz.distinctness.offset='HzD') par(opar) # depth functions are generated using the LPP function opar <- par(mfrow=c(2,1), mar=c(0,0,3,0)) # generate data d.1 <- lapply(1:10, random_profile, SPC=TRUE, n=c(6, 7, 8), n_prop=1, method='LPP') d.1 <- combine(d.1) # plot plotSPC(d.1, name='name', color='p1', col.label = 'LPP Defaults') # do this again, this time set all of the LPP parameters d.2 <- lapply(1:10, random_profile, SPC=TRUE, n=c(6, 7, 8), n_prop=1, method='LPP', lpp.a=5, lpp.b=10, lpp.d=5, lpp.e=5, lpp.u=25) d.2 <- combine(d.2) # plot plotSPC(d.2, name='name', color='p1', col.label = 'Custom LPP Parameters') # reset plotting defaults par(opar) # try plotting the LPP-derived simulated data # aggregated over all profiles a <- slab(d.2, fm= ~ p1) a$mid <- with(a, (top + bottom) / 2) library(lattice) (p1 <- xyplot(mid ~ p.q50, data=a, lower=a$p.q25, upper=a$p.q75, ylim=c(150,-5), alpha=0.5, panel=panel.depth_function, prepanel=prepanel.depth_function, cf=a$contributing_fraction, xlab='Simulated Data', ylab='Depth', main='LPP(a=5, b=10, d=5, e=5, u=25)', par.settings=list(superpose.line=list(col='black', lwd=2)) )) # optionally add original data as step-functions if(require(latticeExtra)) { h <- horizons(d.2) p1 + as.layer(xyplot(top ~ p1, groups=id, data=h, horizontal=TRUE, type='S', par.settings=list(superpose.line=list(col='blue', lwd=1, lty=2)))) }
Levels of pH (reaction) classes including descriptive name, and range from low to high pH
data(reactionclass)
data(reactionclass)
An object of class data.frame
with 11 rows and 3 columns.
Soil Science Division Staff. (2017) Soil Survey Manual. C. Ditzler, K. Scheffe, and H.C. Monger (eds.). USDA Handbook 18. Government Printing Office, Washington, D.C.
Rebuild a SoilProfileCollection object
rebuildSPC(x)
rebuildSPC(x)
x |
a |
Attempt rebuilding a SoilProfileCollection
object by splitting into
components and re-assembling. Likely only used to fix outdated
SoilProfileCollection
objects that are missing slots.
A valid SoilProfileCollection
object.
A valid SoilProfileCollection
object.
D.E. Beaudette
D.E. Beaudette, A.G. Brown
checkSPC
Rebuild a SoilProfileCollection object
Rebuild a SoilProfileCollection object
Attempt rebuilding a SoilProfileCollection
object by splitting into
components and re-assembling. Likely only used to fix outdated
SoilProfileCollection
objects that are missing slots.
Reduce the number of columns in a SoilProfileCollection
to a minimal set plus additional selected columns. Optional metadata columns are included if set. At a minimum the profile ID, horizon top and bottom depths, and horizon ID are included. Horizon designation and horizon texture class column names are included if metadata attributes are set. See details.
reduceSPC(p, column_names = NULL)
reduceSPC(p, column_names = NULL)
p |
a |
column_names |
a set of additional columns to include in the result |
Minimum column names included (when column_names = NULL
)
idname(p)
, horizonDepths(p)
, hzidname(p)
Optional column names included (when metadata are set)
hzdesgnname(p)
, hztexclname(p)
, GHL(p)
a SoilProfileCollection
hzdesgnname()
hztexclname()
GHL()
This is a method made available primarily to repair horizon data that have been corrupted relative to their order at time of SoilProfileCollection construction.
There is an option to specify the target order, but this will not update the corresponding metadata entry tracking the original order. Use this functionality at your own risk.
## S4 method for signature 'SoilProfileCollection' reorderHorizons(object, target.order = NULL)
## S4 method for signature 'SoilProfileCollection' reorderHorizons(object, target.order = NULL)
object |
A SoilProfileCollection |
target.order |
A numeric vector of equal length to |
SoilProfileCollection
Attempt a simple repair of horizon bottom depths in the presence of NA
, or in cases where the horizon shares a common top and bottom depth. Both situations are common in pedon description where "contact" (Cd, Cr, R, etc.) was described without a lower depth.
repairMissingHzDepths(x, adj = 10, max.depth = 200)
repairMissingHzDepths(x, adj = 10, max.depth = 200)
x |
|
adj |
vertical offset applied to "repair" missing bottom depths when top and bottom depth are equal or bottom depth is missing. ( |
max.depth |
If adj is |
This repair is applied to the deepest horizon within a profile as identified by getLastHorizonID
, as well as to bottom depths of any horizon that has a horizon below it. Horizon bottom depths are adjusted by adding adj
(if non-NA). If the resulting value exceeds max.depth
, the max.depth
value is returned (if not NA
).
SoilProfileCollection
with a new (logical) horizon-level attribute .repaired
marking affected horizons
h <- data.frame( id = c(1, 1, 1, 2, 2, 2, 2, 3, 3), top = c(0:2, 0:3, 0:1) * 10, bottom = c(rep(NA_integer_, 7), c(10, 99)) ) # NA depths result in warnings suppressWarnings({ depths(h) <- id ~ top + bottom }) # inspect data before repairs plotSPC(h) g <- repairMissingHzDepths(h) # all depth logic now valid all(checkHzDepthLogic(g)$valid) # inspect plotSPC(g) # no adj, max.depth only f <- repairMissingHzDepths(h, adj = NA, max.depth = 200) all(checkHzDepthLogic(f)$valid) plotSPC(f) # max.depth defaults to max(x) if too small f$bottom[c(3,7)] <- NA d <- repairMissingHzDepths(f, adj = NA, max.depth = 20) all(checkHzDepthLogic(d)$valid) plotSPC(d)
h <- data.frame( id = c(1, 1, 1, 2, 2, 2, 2, 3, 3), top = c(0:2, 0:3, 0:1) * 10, bottom = c(rep(NA_integer_, 7), c(10, 99)) ) # NA depths result in warnings suppressWarnings({ depths(h) <- id ~ top + bottom }) # inspect data before repairs plotSPC(h) g <- repairMissingHzDepths(h) # all depth logic now valid all(checkHzDepthLogic(g)$valid) # inspect plotSPC(g) # no adj, max.depth only f <- repairMissingHzDepths(h, adj = NA, max.depth = 200) all(checkHzDepthLogic(f)$valid) plotSPC(f) # max.depth defaults to max(x) if too small f$bottom[c(3,7)] <- NA d <- repairMissingHzDepths(f, adj = NA, max.depth = 20) all(checkHzDepthLogic(d)$valid) plotSPC(d)
Replaces horizon data with new data.frame
object.
## S4 replacement method for signature 'SoilProfileCollection' replaceHorizons(object) <- value
## S4 replacement method for signature 'SoilProfileCollection' replaceHorizons(object) <- value
object |
A |
value |
An object inheriting |
# load test data data(sp2) # promote to SPC depths(sp2) <- id ~ top + bottom # one profile p <- sp2[1,] # 23 variables in horizon data length(horizonNames(sp2)) # remove all but essential ones replaceHorizons(p) <- horizons(p)[,c(idname(p), hzidname(p), horizonDepths(p))] # inspect result (a clean slate) horizons(p)
# load test data data(sp2) # promote to SPC depths(sp2) <- id ~ top + bottom # one profile p <- sp2[1,] # 23 variables in horizon data length(horizonNames(sp2)) # remove all but essential ones replaceHorizons(p) <- horizons(p)[,c(idname(p), hzidname(p), horizonDepths(p))] # inspect result (a clean slate) horizons(p)
Restrictions describe root-limiting features in the soil. A single profile may have multiple restrictions.
restrictions()
(get method): Get restriction data from a SoilProfileCollection.
restrictions<-
(set method): Set restriction data for a SoilProfileCollection. The profile ID column from object
(idname(object)
) must be present in the replacement value
object.
## S4 method for signature 'SoilProfileCollection' restrictions(object) ## S4 replacement method for signature 'SoilProfileCollection' restrictions(object) <- value
## S4 method for signature 'SoilProfileCollection' restrictions(object) ## S4 replacement method for signature 'SoilProfileCollection' restrictions(object) <- value
object |
A SoilProfileCollection |
value |
An data.frame object containing at least a column with name |
# load test data data(sp2) # promote to SPC depths(sp2) <- id ~ top + bottom # assign abrupt textural change to a profile newdata <- data.frame(id = c("hon-21"), restrkind = "abrupt textural change", restrdep = 46) # do left join restrictions(sp2) <- newdata # inspect site table: newvalue TRUE only for horizons # with top depth equal to zero restrictions(sp2)
# load test data data(sp2) # promote to SPC depths(sp2) <- id ~ top + bottom # assign abrupt textural change to a profile newdata <- data.frame(id = c("hon-21"), restrkind = "abrupt textural change", restrdep = 46) # do left join restrictions(sp2) <- newdata # inspect site table: newvalue TRUE only for horizons # with top depth equal to zero restrictions(sp2)
Convert sRGB color coordinates to the closest n
Munsell chips in the munsell
lookup table. This function will be replaced by col2Munsell()
in aqp 2.1.
rgb2munsell(color, colorSpace = c("CIE2000", "LAB", "sRGB"), nClosest = 1)
rgb2munsell(color, colorSpace = c("CIE2000", "LAB", "sRGB"), nClosest = 1)
color |
a |
colorSpace |
distance metric (colorspace) to use for finding the closest chip: CIE2000 is the most accurate but requires farver >= 2.0.3, Euclidean distance in CIELAB is a close second, while Euclidean distance in sRGB is not at all accurate and should only be used for demonstration purposes. |
nClosest |
number of closest Munsell colors to return (valid range is 1-20) |
an (NA-padded) data.frame
containing hue
, value
, chroma
, and distance (dE00 when colorSpace = 'CIE2000'
, Euclidean distance otherwise) to nearest matching color.
This function is fully vectorized and will pad output with NA-records when NA are present in color
.
D.E. Beaudette
http://ncss-tech.github.io/AQP/ http://www.brucelindbloom.com/index.html?ColorCalcHelp.html https://www.munsellcolourscienceforpainters.com/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html http://www.cis.rit.edu/mcsl/online/munsell.php
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # Munsell notation to sRGB triplets [0-1] color <- munsell2rgb( the_hue = c('10YR', '2.5YR', '5YR'), the_value = c(3, 5, 2.5), the_chroma = c(5, 6, 2), return_triplets = TRUE ) # result is a data.frame color # back-transform sRGB -> closest Munsell color # sigma is the dE00 color contrast metric rgb2munsell(color)
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # Munsell notation to sRGB triplets [0-1] color <- munsell2rgb( the_hue = c('10YR', '2.5YR', '5YR'), the_value = c(3, 5, 2.5), the_chroma = c(5, 6, 2), return_triplets = TRUE ) # result is a data.frame color # back-transform sRGB -> closest Munsell color # sigma is the dE00 color contrast metric rgb2munsell(color)
Average soil hydraulic parameters generated by the first stage predictions of the ROSETTA model by USDA soil texture class. These data were extracted from ROSETTA documentation and re-formatted for ease of use.
data(ROSETTA.centroids)
data(ROSETTA.centroids)
A data frame:
soil texture class, ordered from low to high available water holding capacity
average saturated water content
average residual water content
average value, related to the inverse of the air entry suction, log10-transformed values with units of cm
average value, index of pore size distribution, log10-transformed values with units of 1/cm
1 standard deviation of theta_r
1 standard deviation of theta_s
1 standard deviation of alpha
1 standard deviation of npar
approximate volumetric water content at which soil material is saturated
approximate volumetric water content at which matrix potential = -33kPa
approximate volumetric water content at which matrix potential = -1500kPa
approximate available water holding capacity: VWC(-33kPa)
VWC(-1500kPa)
Theoretical water-retention parameters for uniform soil material of each texture class have been estimated via van Genuchten model.
ROSETTA Class Average Hydraulic Parameters
van Genuchten, M.Th. (1980). "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils". Soil Science Society of America Journal. 44 (5): 892-898.
Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 2001. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251(3–4): 163-176.
## Not run: library(aqp) library(soilDB) library(latticeExtra) data("ROSETTA.centroids") # iterate over horizons and generate VG model curve res <- lapply(1:nrow(ROSETTA.centroids), function(i) { m <- KSSL_VG_model(VG_params = ROSETTA.centroids[i, ], phi_min = 10^-3, phi_max=10^6)$VG_curve # copy generalized hz label m$hz <- ROSETTA.centroids$hz[i] # copy ID m$texture_class <- ROSETTA.centroids$texture[i] return(m) }) # copy over lab sample number as ID res <- do.call('rbind', res) # check: OK str(res) # visual check: OK xyplot( phi ~ theta | texture_class, data=res, type=c('l', 'g'), scales=list(alternating=3, x=list(tick.number=10), y=list(log=10, tick.number=10)), yscale.components=yscale.components.logpower, ylab=expression(Suction~~(kPa)), xlab=expression(Volumetric~Water~Content~~(cm^3/cm^3)), par.settings = list(superpose.line=list(col='RoyalBlue', lwd=2)), strip=strip.custom(bg=grey(0.85)), as.table=TRUE ) ## End(Not run)
## Not run: library(aqp) library(soilDB) library(latticeExtra) data("ROSETTA.centroids") # iterate over horizons and generate VG model curve res <- lapply(1:nrow(ROSETTA.centroids), function(i) { m <- KSSL_VG_model(VG_params = ROSETTA.centroids[i, ], phi_min = 10^-3, phi_max=10^6)$VG_curve # copy generalized hz label m$hz <- ROSETTA.centroids$hz[i] # copy ID m$texture_class <- ROSETTA.centroids$texture[i] return(m) }) # copy over lab sample number as ID res <- do.call('rbind', res) # check: OK str(res) # visual check: OK xyplot( phi ~ theta | texture_class, data=res, type=c('l', 'g'), scales=list(alternating=3, x=list(tick.number=10), y=list(log=10, tick.number=10)), yscale.components=yscale.components.logpower, ylab=expression(Suction~~(kPa)), xlab=expression(Volumetric~Water~Content~~(cm^3/cm^3)), par.settings = list(superpose.line=list(col='RoyalBlue', lwd=2)), strip=strip.custom(bg=grey(0.85)), as.table=TRUE ) ## End(Not run)
Data from Table 1 and Supplementary Tables 1 and 2 from "A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland".
data(rowley2019)
data(rowley2019)
A SoilProfileCollection
object:
site-level attributes
profile ID
profile group
horizon-level attributes
sample ID
horizon name
pH
cmol(+) / kg, exchangeable Al
cmol(+) / kg, exchangeable Ca
cmol(+) / kg, cation exchange capacity calculated as the sum of exchangeable cations, not including H+
percent
percent
percent, total nitrogen
percent, soil organic carbon
carbon to nitrogen ratio
g/kg, oxalate-extractable Al
g/kg, oxalate-extractable Fe
g/kg, dithionite-extractable Al
g/kg, dithionite-extractable Fe
Fe_o to Fe_d ratio
profile ID
horizon top (cm)
horizon bottom (cm)
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
g/kg by x-ray fluorescence
percent by x-ray diffraction spectra
percent by x-ray diffraction spectra
percent by x-ray diffraction spectra
percent by x-ray diffraction spectra
percent by x-ray diffraction spectra
percent by x-ray diffraction spectra
percent
percent
percent
percent <2um
percent 2-50um
percent 50-2000um
Milliq ex: grams of Ca per kilogram of dry soil (g kg-1)
2M KCl: grams of Ca per kilogram of dry soil (g kg-1)
0.05 M Na2EDTA: grams of Ca per kilogram of dry soil (g kg-1)
0.5 M CuCl2: grams of Ca per kilogram of dry soil (g kg-1)
horizon ID
Mike C. Rowley, Stephanie Grand, Thierry Adatte, Eric P. Verrecchia, Cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils), Switzerland, Geoderma, 2019, 114065, ISSN 0016-7061, doi:10.1016/j.geoderma.2019.114065.
library(lattice) # load data data('rowley2019') # check first 5 rows and 10 columns of horizon data horizons(rowley2019)[1:5, 1:10] # check site data site(rowley2019) # graphical summary par(mar=c(1,1,3,1)) plotSPC(rowley2019, color='Feo_Fed', name='name', cex.names=0.85) plotSPC(rowley2019, color='Ca_exch', name='name', cex.names=0.85) # grouped plot groupedProfilePlot(rowley2019, groups = 'group', color='Ca_exch', name='name', cex.names=0.85, group.name.offset = -10) # aggregate over 1cm slices, for select properties a <- slab(rowley2019, group ~ Reactive_carbonate + Ca_exch + pH + K_Feldspar + Na_Plagioclase + Al) # plot styling tps <- list(superpose.line=list(lwd=2, col=c('royalblue', 'firebrick'))) # make the figure xyplot(top ~ p.q50 | variable, data=a, ylab='Depth', groups=group, main='', as.table=TRUE, xlab='median bounded by 25th and 75th percentiles', lower=a$p.q25, upper=a$p.q75, ylim=c(55,-5), panel=panel.depth_function, prepanel=prepanel.depth_function, cf=a$contributing_fraction, alpha=0.33, sync.colors=TRUE, scales=list(x=list(relation='free', alternating=1)), par.settings=tps, auto.key=list(columns=2, lines=TRUE, points=FALSE), strip=strip.custom(bg=grey(0.9)) )
library(lattice) # load data data('rowley2019') # check first 5 rows and 10 columns of horizon data horizons(rowley2019)[1:5, 1:10] # check site data site(rowley2019) # graphical summary par(mar=c(1,1,3,1)) plotSPC(rowley2019, color='Feo_Fed', name='name', cex.names=0.85) plotSPC(rowley2019, color='Ca_exch', name='name', cex.names=0.85) # grouped plot groupedProfilePlot(rowley2019, groups = 'group', color='Ca_exch', name='name', cex.names=0.85, group.name.offset = -10) # aggregate over 1cm slices, for select properties a <- slab(rowley2019, group ~ Reactive_carbonate + Ca_exch + pH + K_Feldspar + Na_Plagioclase + Al) # plot styling tps <- list(superpose.line=list(lwd=2, col=c('royalblue', 'firebrick'))) # make the figure xyplot(top ~ p.q50 | variable, data=a, ylab='Depth', groups=group, main='', as.table=TRUE, xlab='median bounded by 25th and 75th percentiles', lower=a$p.q25, upper=a$p.q75, ylim=c(55,-5), panel=panel.depth_function, prepanel=prepanel.depth_function, cf=a$contributing_fraction, alpha=0.33, sync.colors=TRUE, scales=list(x=list(relation='free', alternating=1)), par.settings=tps, auto.key=list(columns=2, lines=TRUE, points=FALSE), strip=strip.custom(bg=grey(0.9)) )
This function makes small adjustments to elements of x
until overlap defined by thresh
is removed, or until maxIter
is reached. Rank order and boundary conditions (defined by min.x
and max.x
) are preserved. The underlying algorithm is based on simulated annealing. The "cooling schedule" parameters T0
and k
can be used to tune the algorithm for specific applications.
SANN_1D( x, thresh = 0.6, adj = thresh * 2/3, min.x = min(x) - 0.2, max.x = max(x) + 0.2, maxIter = 1000, trace = FALSE, tiny = 1e-04, T0 = 500, k = 10, ... )
SANN_1D( x, thresh = 0.6, adj = thresh * 2/3, min.x = min(x) - 0.2, max.x = max(x) + 0.2, maxIter = 1000, trace = FALSE, tiny = 1e-04, T0 = 500, k = 10, ... )
x |
vector of horizontal positions, pre-sorted |
thresh |
horizontal threshold defining "overlap" or distance between elements of |
adj |
specifies the size of perturbations within |
min.x |
left-side boundary condition, consider expanding if a solution cannot be found within |
max.x |
right-side boundary condition, consider expanding if a solution cannot be found within |
maxIter |
maximum number of iterations to attempt before giving up and returning a regularly-spaced sequence |
trace |
print diagnostics, result is a |
tiny |
the smallest allowable overlap |
T0 |
starting temperature |
k |
cooling constant |
... |
not used, absorbs additional arguments to |
Ideas for solving difficult overlap scenarios:
widen the boundary conditions by adjusting min.x
and max.x
beyond the original scale of x
reduce the allowable overlap threshold thresh
reduce the magnitude of perturbations (adj
) and increase maxIter
increase k
When trace = FALSE
, a vector of the same length as x
, preserving rank-ordering and boundary conditions. When trace = TRUE
a list containing the new sequence along with information about objective functions and decisions made during iteration.
D.E. Beaudette and K.C. Thompson
electroStatics_1D()
, fixOverlap()
x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10) # easy z <- fixOverlap(x, thresh = 0.2, trace = TRUE) # harder z <- fixOverlap(x, thresh = 0.6, trace = TRUE) # much harder z <- fixOverlap(x, thresh = 0.9, trace = TRUE) # interpret `trace` output # relatively challenging x <- c(1, 2, 3.4, 3.4, 3.4, 3.4, 6, 8, 10, 12, 13, 13, 15, 15.5) # fix overlap, return debugging information set.seed(10101) z <- fixOverlap(x, thresh = 0.8, trace = TRUE) # setup plot device par(mar = c(4, 4, 1, 1)) layout(matrix(c(1,2,3)), widths = 1, heights = c(1,1,2)) # objective function = overlap + SSD plot( seq_along(z$stats), z$stats, type = 'h', las = 1, xlab = 'Iteration', ylab = 'Overlap', cex.axis = 0.8 ) # SSD: deviation from original configuration plot( seq_along(z$ssd), z$ssd, type = 'h', las = 1, xlab = 'Iteration', ylab = 'Deviation', cex.axis = 0.8 ) # adjustments at each iteration matplot( z$states, type = 'l', lty = 1, las = 1, xlab = 'Iteration', ylab = 'x-position' ) # trace log # B: boundary condition violation # O: rank (order) violation # +: accepted perturbation # -: rejected perturbation table(z$log)
x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10) # easy z <- fixOverlap(x, thresh = 0.2, trace = TRUE) # harder z <- fixOverlap(x, thresh = 0.6, trace = TRUE) # much harder z <- fixOverlap(x, thresh = 0.9, trace = TRUE) # interpret `trace` output # relatively challenging x <- c(1, 2, 3.4, 3.4, 3.4, 3.4, 6, 8, 10, 12, 13, 13, 15, 15.5) # fix overlap, return debugging information set.seed(10101) z <- fixOverlap(x, thresh = 0.8, trace = TRUE) # setup plot device par(mar = c(4, 4, 1, 1)) layout(matrix(c(1,2,3)), widths = 1, heights = c(1,1,2)) # objective function = overlap + SSD plot( seq_along(z$stats), z$stats, type = 'h', las = 1, xlab = 'Iteration', ylab = 'Overlap', cex.axis = 0.8 ) # SSD: deviation from original configuration plot( seq_along(z$ssd), z$ssd, type = 'h', las = 1, xlab = 'Iteration', ylab = 'Deviation', cex.axis = 0.8 ) # adjustments at each iteration matplot( z$states, type = 'l', lty = 1, las = 1, xlab = 'Iteration', ylab = 'x-position' ) # trace log # B: boundary condition violation # O: rank (order) violation # +: accepted perturbation # -: rejected perturbation table(z$log)
A very simple implementation of Shannon entropy.
shannonEntropy(x, b = 2)
shannonEntropy(x, b = 2)
x |
vector of probabilities (0,1), must sum to 1, should not contain NA |
b |
logarithm base |
0
s are automatically removed by na.rm = TRUE
, as (0 * log(0) = Nan)
A single numeric value.
When b = length(x)
the result is the normalized Shannon entropy of (Kempen et al, 2009).
Kempen, Bas, Dick J. Brus, Gerard B.M. Heuvelink, and Jetse J. Stoorvogel. 2009. "Updating the 1:50,000 Dutch Soil Map Using Legacy Soil Data: A Multinominal Logistic Regression Approach." Geoderma 151: 311-26. doi:10.1016/j.geoderma.2009.04.023
Shannon, Claude E. (July-October 1948). "A Mathematical Theory of Communication". Bell System Technical Journal. 27 (3): 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x
# a very simple example p <- c(0.25, 0.25, 0.4, 0.05, 0.05) shannonEntropy(p)
# a very simple example p <- c(0.25, 0.25, 0.4, 0.05, 0.05) shannonEntropy(p)
Soil physical and chemical data associated with two bio-climatic sequences (granitic and andesitic parent material) from the western flank of the Sierra Nevada mountains.
data(sierraTransect)
data(sierraTransect)
An object of class SoilProfileCollection
of length 14.
These data were assembled from Dahlgren et al. (1997) and Rasmussen et al. (2007), with permission granted by lead authors, by D.E. Beaudette.
Original manuscripts and personal communication with authors.
R.A. Dahlgren, J.L. Boettinger, G.L. Huntington, R.G. Amundson. Soil development along an elevational transect in the western Sierra Nevada, California, Geoderma, Volume 78, Issues 3–4, 1997, Pages 207-236.
Rasmussen, C., Matsuyama, N., Dahlgren, R.A., Southard, R.J. and Brauer, N. (2007), Soil Genesis and Mineral Transformation Across an Environmental Gradient on Andesitic Lahar. Soil Sci. Soc. Am. J., 71: 225-237.
data(sierraTransect) # tighter margins op <- par(mar=c(0,0,0,0)) # quick sketch plotSPC(sierraTransect, name.style = 'center-center', width=0.3) # split by transect par(mar=c(0,0,1,1)) groupedProfilePlot( sierraTransect, groups='transect', group.name.offset = -15, width=0.3, name.style='center-center' ) # thematic groupedProfilePlot( sierraTransect, groups='transect', group.name.offset = -15, width=0.3, name.style='center-center', color='Fe_o_to_Fe_d' ) # horizon boundary viz sierraTransect$hzd <- hzDistinctnessCodeToOffset(substr(sierraTransect$hz_boundary, 0, 1)) groupedProfilePlot( sierraTransect, groups='transect', group.name.offset = -15, width=0.3, name.style='center-center', color='Fe_o_to_Fe_d', hz.distinctness.offset='hzd') # split transects g <- subset(sierraTransect, transect == 'Granite') a <- subset(sierraTransect, transect == 'Andesite') g.order <- order(g$elev) a.order <- order(a$elev) # order (left -> right) by elevation par(mar=c(2,0,0,2), mfrow=c(2,1)) plot(g, width=0.3, name.style='center-center', cex.names=0.75, plot.order=g.order) axis(1, at=1:length(g), labels=g$elev[g.order], line=-1.5) plot(a, width=0.3, name.style='center-center', cex.names=0.75, plot.order=a.order) axis(1, at=1:length(a), labels=a$elev[a.order], line=-1.5) par(op)
data(sierraTransect) # tighter margins op <- par(mar=c(0,0,0,0)) # quick sketch plotSPC(sierraTransect, name.style = 'center-center', width=0.3) # split by transect par(mar=c(0,0,1,1)) groupedProfilePlot( sierraTransect, groups='transect', group.name.offset = -15, width=0.3, name.style='center-center' ) # thematic groupedProfilePlot( sierraTransect, groups='transect', group.name.offset = -15, width=0.3, name.style='center-center', color='Fe_o_to_Fe_d' ) # horizon boundary viz sierraTransect$hzd <- hzDistinctnessCodeToOffset(substr(sierraTransect$hz_boundary, 0, 1)) groupedProfilePlot( sierraTransect, groups='transect', group.name.offset = -15, width=0.3, name.style='center-center', color='Fe_o_to_Fe_d', hz.distinctness.offset='hzd') # split transects g <- subset(sierraTransect, transect == 'Granite') a <- subset(sierraTransect, transect == 'Andesite') g.order <- order(g$elev) a.order <- order(a$elev) # order (left -> right) by elevation par(mar=c(2,0,0,2), mfrow=c(2,1)) plot(g, width=0.3, name.style='center-center', cex.names=0.75, plot.order=g.order) axis(1, at=1:length(g), labels=g$elev[g.order], line=-1.5) plot(a, width=0.3, name.style='center-center', cex.names=0.75, plot.order=a.order) axis(1, at=1:length(a), labels=a$elev[a.order], line=-1.5) par(op)
Simulate a collection of soil profiles based on the horizonation of a single soil profile. Now deprecated: use perturb()
for perturbations of horizon thicknesses or boundaries.
sim(x, n = 1, iterations = 25, hz.sd = 2, min.thick = 2)
sim(x, n = 1, iterations = 25, hz.sd = 2, min.thick = 2)
x |
a SoilProfileCollection object containing a single profile from which to draw simulated data |
n |
the number of requested simulations |
iterations |
sampling iterations used to determine each horizon thickness |
hz.sd |
standard deviation used to simulate horizon thickness, can be a vector but must divide evenly into the number of horizons found in |
min.thick |
minimum horizon thickness allowed in simulation results |
This function generates a collection of simulated soil profiles based on the horizon thickness data associated with a single "template" profile. Simulation is based on sampling from a family of Gaussian distribution with means defined by the "template" profile and standard deviation defined by the user.
A SoilProfileCollection object with n
simulated profiles, each containing the same number of horizons and same data as x
D. E. Beaudette
# please see documentation for perturb() for examples # the sim() function calls perturb() internally
# please see documentation for perturb() for examples # the sim() function calls perturb() internally
Simulate plausible soil colors based on several possible parameterization of a "range in characteristics" (RIC). Soil color RIC can be specified by a list of parameters:
soil color proportions, as output from aggregateColor()
– method = 'proportions'
most likely Munsell color, CIE2000 threshold, and vector of acceptable hues – method = 'dE00'
data.frame
of Munsell hue, value, and chroma representing observed soil colors – method = 'mvnorm'
simulateColor( method = c("dE00", "proportions", "mvnorm"), n, parameters, SPC = NULL )
simulateColor( method = c("dE00", "proportions", "mvnorm"), n, parameters, SPC = NULL )
method |
simulation method, see details |
n |
number of simulated colors per group |
parameters |
a
Where |
SPC |
|
a list
, unless SPC
is specified, then a SoilProfileCollection
object
D.E. Beaudette
# restrict examples to 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # m: representative or most likely color # thresh: dE00 threshold # hues: allowed Munsell hues p <- list( 'A' = list(m = '7.5YR 3/3', thresh = 5, hues = c('7.5YR')), 'BA' = list(m = '7.5YR 4/4', thresh = 8, hues = c('7.5YR')), 'Bt1' = list(m = '7.5YR 4/4', thresh = 8, hues = c('5YR', '7.5YR')), 'Bt2' = list(m = '5YR 4/5', thresh = 8, hues = c('5YR', '7.5YR')), 'Bt3' = list(m = '10YR 4/6', thresh = 10, hues = c('10YR', '7.5YR')), 'Cr' = list(m = '2.5G 6/2', thresh = 15, hues = c('2.5G', '2.5GY', '2.5BG')) ) # simulate (cols <- simulateColor(method = 'dE00', n = 10, parameters = p)) # preview previewColors(parseMunsell(unlist(cols)), method = 'MDS') # another example, this time using a larger dE00 threshold p <- list( 'A' = list(m = '7.5YR 3/3', thresh = 20, hues = c('10YR', '7.5YR', '5YR')) ) # simulate set.seed(54654) cols <- simulateColor(method = 'dE00', n = 200, parameters = p) # flatten cols <- unlist(cols) # tabulate, sort: most frequent color should be 7.5YR 3/3 sort(table(cols), decreasing = TRUE) # review colors previewColors(parseMunsell(cols)) # what does a dE00 threshold look like on 3 pages of hue? contrastChart('7.5YR 3/3', hues = c('10YR', '7.5YR', '5YR'), thresh = 20)
# restrict examples to 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) # m: representative or most likely color # thresh: dE00 threshold # hues: allowed Munsell hues p <- list( 'A' = list(m = '7.5YR 3/3', thresh = 5, hues = c('7.5YR')), 'BA' = list(m = '7.5YR 4/4', thresh = 8, hues = c('7.5YR')), 'Bt1' = list(m = '7.5YR 4/4', thresh = 8, hues = c('5YR', '7.5YR')), 'Bt2' = list(m = '5YR 4/5', thresh = 8, hues = c('5YR', '7.5YR')), 'Bt3' = list(m = '10YR 4/6', thresh = 10, hues = c('10YR', '7.5YR')), 'Cr' = list(m = '2.5G 6/2', thresh = 15, hues = c('2.5G', '2.5GY', '2.5BG')) ) # simulate (cols <- simulateColor(method = 'dE00', n = 10, parameters = p)) # preview previewColors(parseMunsell(unlist(cols)), method = 'MDS') # another example, this time using a larger dE00 threshold p <- list( 'A' = list(m = '7.5YR 3/3', thresh = 20, hues = c('10YR', '7.5YR', '5YR')) ) # simulate set.seed(54654) cols <- simulateColor(method = 'dE00', n = 200, parameters = p) # flatten cols <- unlist(cols) # tabulate, sort: most frequent color should be 7.5YR 3/3 sort(table(cols), decreasing = TRUE) # review colors previewColors(parseMunsell(cols)) # what does a dE00 threshold look like on 3 pages of hue? contrastChart('7.5YR 3/3', hues = c('10YR', '7.5YR', '5YR'), thresh = 20)
Get site data from SoilProfileCollection. Result is returned in the same data.frame
class used to initially construct the SoilProfileCollection.
There are two options available via the site<-
setter.
The first is a "normalization" by formula interface, whereby one specifies an attribute that is constant in horizons within profiles to be promoted to a site-level variable: site(spc) <- ~ horizonvariable
The second is creation of site data from an external data.frame
via merge (LEFT JOIN). There must be one or more same-named columns (with at least some matching data) on the left and right hand side to facilitate the join: site(spc) <- newdata
## S4 method for signature 'SoilProfileCollection' site(object) site(object) <- value
## S4 method for signature 'SoilProfileCollection' site(object) site(object) <- value
object |
A SoilProfileCollection |
value |
A formula or object inheriting |
# load test data data(sp2) # promote to SPC depths(sp2) <- id ~ top + bottom # normalize a horizon-level attribute to site site(sp2) <- ~ surface # inspect site table site(sp2) # make some data: classify two geomorphic surfaces with numeric value newdata <- data.frame(surface = c("holocene", "lower riverbank"), newvalue = c(1,2)) # do left join based on newly-normalized "surface" attribute site(sp2) <- newdata # inspect site table: holocene & lower riverbank have values site(sp2)
# load test data data(sp2) # promote to SPC depths(sp2) <- id ~ top + bottom # normalize a horizon-level attribute to site site(sp2) <- ~ surface # inspect site table site(sp2) # make some data: classify two geomorphic surfaces with numeric value newdata <- data.frame(surface = c("holocene", "lower riverbank"), newvalue = c(1,2)) # do left join based on newly-normalized "surface" attribute site(sp2) <- newdata # inspect site table: holocene & lower riverbank have values site(sp2)
Set site column names
Get names of columns in site table.
## S4 replacement method for signature 'SoilProfileCollection' siteNames(object) <- value ## S4 method for signature 'SoilProfileCollection' siteNames(object)
## S4 replacement method for signature 'SoilProfileCollection' siteNames(object) <- value ## S4 method for signature 'SoilProfileCollection' siteNames(object)
object |
a SoilProfileCollection |
value |
a unique vector of equal length to number of columns in site: |
Aggregate soil properties along user-defined slabs
, and optionally within
groups.
## S4 method for signature 'SoilProfileCollection' slab( object, fm, slab.structure = 1, strict = FALSE, byhz = TRUE, slab.fun = slab_function(method = "numeric"), cpm = 1, weights = NULL, ... ) slab_function( method = c("numeric", "factor", "hd", "weighted.numeric", "weighted.factor", "fast") )
## S4 method for signature 'SoilProfileCollection' slab( object, fm, slab.structure = 1, strict = FALSE, byhz = TRUE, slab.fun = slab_function(method = "numeric"), cpm = 1, weights = NULL, ... ) slab_function( method = c("numeric", "factor", "hd", "weighted.numeric", "weighted.factor", "fast") )
object |
a SoilProfileCollection |
fm |
A formula: either |
slab.structure |
A user-defined slab thickness (defined by an integer), or user-defined structure (numeric vector). See details below. |
strict |
logical: should horizons be strictly checked for self-consistency? |
byhz |
logical: should horizons or whole profiles be removed by logic checks in |
slab.fun |
Function used to process each 'slab' of data, ideally
returning a vector with names attribute. Defaults to a wrapper function
around |
cpm |
Strategy for normalizing slice-wise probabilities, dividing by
either: number of profiles with data at the current slice ( |
weights |
Column name containing site-level weights |
... |
further arguments passed to |
method |
one of |
Multiple continuous variables OR a single categorical (factor) variable can
be aggregated within a call to slab
. Basic error checking is
performed to make sure that top and bottom horizon boundaries make sense.
User-defined aggregate functions (slab.fun
) should return a named
vector of results. A new, named column will appear in the results of
slab
for every named element of a vector returned by slab.fun
.
See examples below for a simple example of a slab function that computes
mean, mean-1SD and mean+1SD. The default slab function wraps
stats::quantile
from the Hmisc package, which requires at least 2
observations per chunk. Note that if group
is a factor it must not contain
NAs.
slab()
uses dice()
to "resample" profiles to 1cm slices from depth 0 to max(x)
(or slab.structure[2]
, if defined).
Sometimes slab
is used to conveniently re-arrange data vs. aggregate.
This is performed by specifying identity
in slab.fun
. See
examples beflow for a demonstration of this functionality.
The default slab.fun
was changed 2019-10-30 from a wrapper around
Hmisc::hdquantile
to a wrapper around stats::quantile
. See
examples below for a simple way to switch to the HD quantile estimator.
Execution time scales linearly (slower) with the total number of profiles in
object
, and exponentially (faster) as the number of profiles / group
is increased. slab
and slice
are much faster and require less
memory if input data are either numeric or character.
There are several possible ways to define slabs, using
slab.structure
:
e.g. 10: data are aggregated over a regular sequence of 10-unit thickness slabs
e.g. c(50, 60): data are aggregated over depths spanning 50–60 units
e.g. c(0, 5, 10, 50, 100): data are aggregated over the depths spanning 0–5, 5–10, 10–50, 50–100 units
slab_function()
: The default "numeric"
aggregation method is the "fast"
numeric (quantile) method. Additional methods include "factor"
for categorical data, "hd"
to use the Harrell-Davis Distribution-Free Quantile Estimator from the Hmisc package, and "weighted
" to use a weighted quantile method from the Hmisc package
Output is returned in long format, such that slice-wise aggregates
are returned once for each combination of grouping level (optional),
variable described in the fm
argument, and depth-wise 'slab'.
Aggregation of numeric variables, using the default slab function:
The names of variables included in the call to
slab
.
The name of the grouping variable when provided, otherwise a fake grouping variable named 'all.profiles'.
The slice-wise 5th percentile.
The slice-wise 25th percentile
The slice-wise 50th percentile (median)
The slice-wise 75th percentile
The slice-wise 95th percentile
The slab top boundary.
The slab bottom boundary.
The fraction of profiles contributing to the aggregate value, ranges from 1/n_profiles to 1.
When a single factor variable is used, slice-wise probabilities for each level of that factor are returned as:
The names
of variables included in the call to slab
.
The name of the grouping variable when provided, otherwise a fake grouping variable named 'all.profiles'.
The slice-wise probability of level A
The slice-wise probability of level B
The slice-wise probability of level n
The slab top boundary.
The slab bottom boundary.
The fraction of profiles contributing to the aggregate value, ranges from 1/n_profiles to 1.
slab_function()
: return an aggregation function based on the method
argument
Typical
usage, where input is a SoilProfileCollection
.
Arguments to slab
have changed with aqp
1.5 (2012-12-29)
as part of a code clean-up and optimization. Calculation of
weighted-summaries was broken in aqp
1.2-6 (2012-06-26), and removed
as of aqp
1.5 (2012-12-29). slab
replaced the previously
defined soil.slot.multiple
function as of aqp
0.98-8.58
(2011-12-21).
D.E. Beaudette
D.E. Beaudette, P. Roudier, A.T. O'Geen, Algorithms for quantitative pedology: A toolkit for soil scientists, Computers & Geosciences, Volume 52, March 2013, Pages 258-268, 10.1016/j.cageo.2012.10.020.
Harrell FE, Davis CE (1982): A new distribution-free quantile estimator. Biometrika 69:635-640.
## ## basic examples ## library(lattice) library(grid) library(data.table) # load sample data, upgrade to SoilProfileCollection data(sp1) depths(sp1) <- id ~ top + bottom hzdesgnname(sp1) <- "name" # aggregate entire collection with two different segment sizes a <- slab(sp1, fm = ~ prop) b <- slab(sp1, fm = ~ prop, slab.structure=5) # check output str(a) # stack into long format ab <- make.groups(a, b) ab$which <- factor(ab$which, levels=c('a','b'), labels=c('1-cm Interval', '5-cm Interval')) # plot median and IQR # custom plotting function for uncertainty viz. xyplot(top ~ p.q50 | which, data=ab, ylab='Depth', xlab='median bounded by 25th and 75th percentiles', lower=ab$p.q25, upper=ab$p.q75, ylim=c(250,-5), panel=panel.depth_function, prepanel=prepanel.depth_function, cf=ab$contributing_fraction, alpha=0.5, layout=c(2,1), scales=list(x=list(alternating=1)) ) ### ### re-arrange data / no aggregation ### # load sample data, upgrade to SoilProfileCollection data(sp1) depths(sp1) <- id ~ top + bottom # arrange data by ID a <- slab(sp1, fm = id ~ prop, slab.fun=identity) # convert id to a factor for plotting a$id <- factor(a$id) # check output str(a) # plot via step function xyplot(top ~ value | id, data=a, ylab='Depth', ylim=c(250, -5), as.table=TRUE, panel=panel.depth_function, prepanel=prepanel.depth_function, scales=list(x=list(alternating=1)) ) ## ## categorical variable example ## data(sp1) depths(sp1) <- id ~ top + bottom # normalize horizon names: result is a factor sp1$name <- generalize.hz( sp1$name, new = c('O','A','B','C'), pat = c('O', '^A','^B','C') ) # compute slice-wise probability so that it sums to contributing fraction, from 0-150 a <- slab(sp1, fm= ~ name, cpm=1, slab.structure=0:150) # convert wide -> long for plotting # result is a data.table # genhz factor levels are set by order in `measure.vars` a.long <- data.table::melt( data.table::as.data.table(a), id.vars = c('top','bottom'), measure.vars = c('O', 'A', 'B', 'C'), ) # plot horizon type proportions using panels xyplot(top ~ value | variable, data = a.long, subset=value > 0, col = 1, lwd = 2, xlab = 'Class Probability', ylab = 'Depth (cm)', strip = strip.custom(bg = grey(0.85)), scales = list(x = list(alternating = FALSE)), ylim = c(150, -5), type=c('S','g'), horizontal = TRUE, layout = c(4,1) ) # again, this time using groups xyplot(top ~ value, data = a.long, groups = variable, subset = value > 0, ylim = c(150, -5), type = c('S','g'), horizontal = TRUE, asp = 2, lwd = 2, auto.key = list( lines = TRUE, points = FALSE, cex = 0.8, columns = 1, space = 'right' ) ) # adjust probability to size of collection, from 0-150 a.1 <- slab(sp1, fm= ~ name, cpm = 2, slab.structure = 0:150) # convert wide -> long for plotting # result is a data.table # genhz factor levels are set by order in `measure.vars` a.1.long <- data.table::melt( data.table::as.data.table(a.1), id.vars = c('top','bottom'), measure.vars = c('O','A','B','C') ) # combine aggregation from `cpm` modes 1 and 2 g <- make.groups(cmp.mode.1 = a.long, cmp.mode.2 = a.1.long) # plot horizon type proportions xyplot(top ~ value | variable, groups = which, data = g, subset = value > 0, ylim = c(240, -5), type = c('S','g'), horizontal = TRUE, layout = c(4,1), auto.key = list(lines = TRUE, points = FALSE, columns = 2), par.settings = list(superpose.line = list(col = c(1, 2), lwd = 2)), scales = list(alternating = 3), xlab = 'Class Probability', ylab = 'Depth (cm)', strip = strip.custom(bg = grey(0.85)) ) # apply slice-wise evaluation of max probability, and assign ML-horizon at each slice gen.hz.ml <- get.ml.hz(a, c('O','A','B','C')) ## Not run: ## ## HD quantile estimator ## library(soilDB) library(lattice) library(data.table) # sample data data('loafercreek', package = 'soilDB') # defaul slab.fun wraps stats::quantile() a <- slab(loafercreek, fm = ~ total_frags_pct + clay) # use HD quantile estimator from Hmisc package instead a.HD <- slab(loafercreek, fm = ~ total_frags_pct + clay, slab.fun = aqp:::.slab.fun.numeric.HD) # combine g <- make.groups(standard=a, HD=a.HD) # note differences densityplot(~ p.q50 | variable, data=g, groups=which, scales=list(relation='free', alternating=3, tick.number=10, y=list(rot=0)), xlab='50th Percentile', pch=NA, main='Loafercreek', auto.key=list(columns=2, points=FALSE, lines=TRUE), par.settings=list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2'))) ) # differences are slight but important xyplot( top ~ p.q50 | variable, data=g, groups=which, xlab='Value', ylab='Depth (cm)', asp=1.5, main='Loafercreek', lower=g$p.q25, upper=g$p.q75, sync.colors=TRUE, alpha=0.25, cf=g$contributing_fraction, ylim=c(115,-5), layout=c(2,1), scales=list(x=list(relation='free')), par.settings=list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2'))), strip=strip.custom(bg=grey(0.85)), panel=panel.depth_function, prepanel=prepanel.depth_function, auto.key=list(columns=2, lines=TRUE, points=FALSE) ) ## ## multivariate examples ## data(sp3) # add new grouping factor sp3$group <- 'group 1' sp3$group[as.numeric(sp3$id) > 5] <- 'group 2' sp3$group <- factor(sp3$group) # upgrade to SPC depths(sp3) <- id ~ top + bottom site(sp3) <- ~ group # custom 'slab' function, returning mean +/- 1SD mean.and.sd <- function(values) { m <- mean(values, na.rm=TRUE) s <- sd(values, na.rm=TRUE) upper <- m + s lower <- m - s res <- c(mean=m, lower=lower, upper=upper) return(res) } # aggregate several variables at once, within 'group' a <- slab(sp3, fm = group ~ L + A + B, slab.fun = mean.and.sd) # check the results: # note that 'group' is the column containing group labels xyplot( top ~ mean | variable, data=a, groups=group, lower=a$lower, upper=a$upper, sync.colors=TRUE, alpha=0.5, cf = a$contributing_fraction, xlab = 'Mean Bounded by +/- 1SD', ylab = 'Depth (cm)', ylim=c(125,-5), layout=c(3,1), scales=list(x=list(relation='free')), par.settings = list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2'))), panel = panel.depth_function, prepanel = prepanel.depth_function, strip = strip.custom(bg=grey(0.85)), auto.key = list(columns=2, lines=TRUE, points=FALSE) ) # compare a single profile to the group-level aggregate values a.1 <- slab(sp3[1, ], fm = group ~ L + A + B, slab.fun = mean.and.sd) # manually update the group column a.1$group <- 'profile 1' # combine into a single data.frame: g <- rbind(a, a.1) # plot with customized line styles xyplot( top ~ mean | variable, data=g, groups=group, subscripts=TRUE, lower=a$lower, upper=a$upper, ylim=c(125,-5), layout=c(3,1), scales=list(x=list(relation='free')), xlab = 'Mean Bounded by +/- 1SD', ylab = 'Depth (cm)', panel=panel.depth_function, prepanel=prepanel.depth_function, sync.colors = TRUE, alpha = 0.25, par.settings = list( superpose.line = list( col = c('orange', 'royalblue', 'black'), lwd = 2, lty = c(1,1,2) ) ), strip = strip.custom(bg=grey(0.85)), auto.key = list(columns=3, lines=TRUE, points=FALSE) ) ## again, this time for a user-defined slab from 40-60 cm a <- slab(sp3, fm = group ~ L + A + B, slab.structure = c(40,60), slab.fun = mean.and.sd ) # now we have weighted average properties (within the defined slab) # for each variable, and each group # convert long -> wide data.table::dcast( data.table::as.data.table(a), formula = group + top + bottom ~ variable, value.var = 'mean' ) ## this time, compute the weighted mean of selected properties, by profile ID a <- slab(sp3, fm = id ~ L + A + B, slab.structure = c(40,60), slab.fun = mean.and.sd ) # convert long -> wide data.table::dcast( data.table::as.data.table(a), formula = id + top + bottom ~ variable, value.var = 'mean' ) ## aggregate the entire collection, using default slab function (hdquantile) ## note the missing left-hand side of the formula a <- slab(sp3, fm= ~ L + A + B) ## weighted-aggregation -- NOT YET IMPLEMENTED -- # load sample data, upgrade to SoilProfileCollection data(sp1) depths(sp1) <- id ~ top + bottom # generate pretend weights as site-level attribute set.seed(10101) sp1$site.wts <- runif(n=length(sp1), min=20, max=100) ## End(Not run)
## ## basic examples ## library(lattice) library(grid) library(data.table) # load sample data, upgrade to SoilProfileCollection data(sp1) depths(sp1) <- id ~ top + bottom hzdesgnname(sp1) <- "name" # aggregate entire collection with two different segment sizes a <- slab(sp1, fm = ~ prop) b <- slab(sp1, fm = ~ prop, slab.structure=5) # check output str(a) # stack into long format ab <- make.groups(a, b) ab$which <- factor(ab$which, levels=c('a','b'), labels=c('1-cm Interval', '5-cm Interval')) # plot median and IQR # custom plotting function for uncertainty viz. xyplot(top ~ p.q50 | which, data=ab, ylab='Depth', xlab='median bounded by 25th and 75th percentiles', lower=ab$p.q25, upper=ab$p.q75, ylim=c(250,-5), panel=panel.depth_function, prepanel=prepanel.depth_function, cf=ab$contributing_fraction, alpha=0.5, layout=c(2,1), scales=list(x=list(alternating=1)) ) ### ### re-arrange data / no aggregation ### # load sample data, upgrade to SoilProfileCollection data(sp1) depths(sp1) <- id ~ top + bottom # arrange data by ID a <- slab(sp1, fm = id ~ prop, slab.fun=identity) # convert id to a factor for plotting a$id <- factor(a$id) # check output str(a) # plot via step function xyplot(top ~ value | id, data=a, ylab='Depth', ylim=c(250, -5), as.table=TRUE, panel=panel.depth_function, prepanel=prepanel.depth_function, scales=list(x=list(alternating=1)) ) ## ## categorical variable example ## data(sp1) depths(sp1) <- id ~ top + bottom # normalize horizon names: result is a factor sp1$name <- generalize.hz( sp1$name, new = c('O','A','B','C'), pat = c('O', '^A','^B','C') ) # compute slice-wise probability so that it sums to contributing fraction, from 0-150 a <- slab(sp1, fm= ~ name, cpm=1, slab.structure=0:150) # convert wide -> long for plotting # result is a data.table # genhz factor levels are set by order in `measure.vars` a.long <- data.table::melt( data.table::as.data.table(a), id.vars = c('top','bottom'), measure.vars = c('O', 'A', 'B', 'C'), ) # plot horizon type proportions using panels xyplot(top ~ value | variable, data = a.long, subset=value > 0, col = 1, lwd = 2, xlab = 'Class Probability', ylab = 'Depth (cm)', strip = strip.custom(bg = grey(0.85)), scales = list(x = list(alternating = FALSE)), ylim = c(150, -5), type=c('S','g'), horizontal = TRUE, layout = c(4,1) ) # again, this time using groups xyplot(top ~ value, data = a.long, groups = variable, subset = value > 0, ylim = c(150, -5), type = c('S','g'), horizontal = TRUE, asp = 2, lwd = 2, auto.key = list( lines = TRUE, points = FALSE, cex = 0.8, columns = 1, space = 'right' ) ) # adjust probability to size of collection, from 0-150 a.1 <- slab(sp1, fm= ~ name, cpm = 2, slab.structure = 0:150) # convert wide -> long for plotting # result is a data.table # genhz factor levels are set by order in `measure.vars` a.1.long <- data.table::melt( data.table::as.data.table(a.1), id.vars = c('top','bottom'), measure.vars = c('O','A','B','C') ) # combine aggregation from `cpm` modes 1 and 2 g <- make.groups(cmp.mode.1 = a.long, cmp.mode.2 = a.1.long) # plot horizon type proportions xyplot(top ~ value | variable, groups = which, data = g, subset = value > 0, ylim = c(240, -5), type = c('S','g'), horizontal = TRUE, layout = c(4,1), auto.key = list(lines = TRUE, points = FALSE, columns = 2), par.settings = list(superpose.line = list(col = c(1, 2), lwd = 2)), scales = list(alternating = 3), xlab = 'Class Probability', ylab = 'Depth (cm)', strip = strip.custom(bg = grey(0.85)) ) # apply slice-wise evaluation of max probability, and assign ML-horizon at each slice gen.hz.ml <- get.ml.hz(a, c('O','A','B','C')) ## Not run: ## ## HD quantile estimator ## library(soilDB) library(lattice) library(data.table) # sample data data('loafercreek', package = 'soilDB') # defaul slab.fun wraps stats::quantile() a <- slab(loafercreek, fm = ~ total_frags_pct + clay) # use HD quantile estimator from Hmisc package instead a.HD <- slab(loafercreek, fm = ~ total_frags_pct + clay, slab.fun = aqp:::.slab.fun.numeric.HD) # combine g <- make.groups(standard=a, HD=a.HD) # note differences densityplot(~ p.q50 | variable, data=g, groups=which, scales=list(relation='free', alternating=3, tick.number=10, y=list(rot=0)), xlab='50th Percentile', pch=NA, main='Loafercreek', auto.key=list(columns=2, points=FALSE, lines=TRUE), par.settings=list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2'))) ) # differences are slight but important xyplot( top ~ p.q50 | variable, data=g, groups=which, xlab='Value', ylab='Depth (cm)', asp=1.5, main='Loafercreek', lower=g$p.q25, upper=g$p.q75, sync.colors=TRUE, alpha=0.25, cf=g$contributing_fraction, ylim=c(115,-5), layout=c(2,1), scales=list(x=list(relation='free')), par.settings=list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2'))), strip=strip.custom(bg=grey(0.85)), panel=panel.depth_function, prepanel=prepanel.depth_function, auto.key=list(columns=2, lines=TRUE, points=FALSE) ) ## ## multivariate examples ## data(sp3) # add new grouping factor sp3$group <- 'group 1' sp3$group[as.numeric(sp3$id) > 5] <- 'group 2' sp3$group <- factor(sp3$group) # upgrade to SPC depths(sp3) <- id ~ top + bottom site(sp3) <- ~ group # custom 'slab' function, returning mean +/- 1SD mean.and.sd <- function(values) { m <- mean(values, na.rm=TRUE) s <- sd(values, na.rm=TRUE) upper <- m + s lower <- m - s res <- c(mean=m, lower=lower, upper=upper) return(res) } # aggregate several variables at once, within 'group' a <- slab(sp3, fm = group ~ L + A + B, slab.fun = mean.and.sd) # check the results: # note that 'group' is the column containing group labels xyplot( top ~ mean | variable, data=a, groups=group, lower=a$lower, upper=a$upper, sync.colors=TRUE, alpha=0.5, cf = a$contributing_fraction, xlab = 'Mean Bounded by +/- 1SD', ylab = 'Depth (cm)', ylim=c(125,-5), layout=c(3,1), scales=list(x=list(relation='free')), par.settings = list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2'))), panel = panel.depth_function, prepanel = prepanel.depth_function, strip = strip.custom(bg=grey(0.85)), auto.key = list(columns=2, lines=TRUE, points=FALSE) ) # compare a single profile to the group-level aggregate values a.1 <- slab(sp3[1, ], fm = group ~ L + A + B, slab.fun = mean.and.sd) # manually update the group column a.1$group <- 'profile 1' # combine into a single data.frame: g <- rbind(a, a.1) # plot with customized line styles xyplot( top ~ mean | variable, data=g, groups=group, subscripts=TRUE, lower=a$lower, upper=a$upper, ylim=c(125,-5), layout=c(3,1), scales=list(x=list(relation='free')), xlab = 'Mean Bounded by +/- 1SD', ylab = 'Depth (cm)', panel=panel.depth_function, prepanel=prepanel.depth_function, sync.colors = TRUE, alpha = 0.25, par.settings = list( superpose.line = list( col = c('orange', 'royalblue', 'black'), lwd = 2, lty = c(1,1,2) ) ), strip = strip.custom(bg=grey(0.85)), auto.key = list(columns=3, lines=TRUE, points=FALSE) ) ## again, this time for a user-defined slab from 40-60 cm a <- slab(sp3, fm = group ~ L + A + B, slab.structure = c(40,60), slab.fun = mean.and.sd ) # now we have weighted average properties (within the defined slab) # for each variable, and each group # convert long -> wide data.table::dcast( data.table::as.data.table(a), formula = group + top + bottom ~ variable, value.var = 'mean' ) ## this time, compute the weighted mean of selected properties, by profile ID a <- slab(sp3, fm = id ~ L + A + B, slab.structure = c(40,60), slab.fun = mean.and.sd ) # convert long -> wide data.table::dcast( data.table::as.data.table(a), formula = id + top + bottom ~ variable, value.var = 'mean' ) ## aggregate the entire collection, using default slab function (hdquantile) ## note the missing left-hand side of the formula a <- slab(sp3, fm= ~ L + A + B) ## weighted-aggregation -- NOT YET IMPLEMENTED -- # load sample data, upgrade to SoilProfileCollection data(sp1) depths(sp1) <- id ~ top + bottom # generate pretend weights as site-level attribute set.seed(10101) sp1$site.wts <- runif(n=length(sp1), min=20, max=100) ## End(Not run)
A method for "slicing" of SoilProfileCollection objects into constant depth intervals. Now deprecated, see [dice()]
.
slice.fast(object, fm, top.down = TRUE, just.the.data = FALSE, strict = TRUE) ## S4 method for signature 'SoilProfileCollection' slice(object, fm, top.down = TRUE, just.the.data = FALSE, strict = TRUE) get.slice(h, id, top, bottom, vars, z, include = "top", strict = TRUE)
slice.fast(object, fm, top.down = TRUE, just.the.data = FALSE, strict = TRUE) ## S4 method for signature 'SoilProfileCollection' slice(object, fm, top.down = TRUE, just.the.data = FALSE, strict = TRUE) get.slice(h, id, top, bottom, vars, z, include = "top", strict = TRUE)
object |
a SoilProfileCollection |
fm |
A formula: either |
top.down |
logical, slices are defined from the top-down: |
just.the.data |
Logical, return just the sliced data or a new |
strict |
Check for logic errors? Default: |
h |
Horizon data.frame |
id |
Profile ID |
top |
Top Depth Column Name |
bottom |
Bottom Depth Column Name |
vars |
Variables of Interest |
z |
Slice Depth (index). |
include |
Either |
Either a new SoilProfileCollection
with data sliced according to fm
, or a data.frame
.
By default, slices are defined from the top-down:
0:10
implies 0-11 depth units.
D.E. Beaudette
D.E. Beaudette, P. Roudier, A.T. O'Geen, Algorithms for quantitative pedology: A toolkit for soil scientists, Computers & Geosciences, Volume 52, March 2013, Pages 258-268, 10.1016/j.cageo.2012.10.020.
library(aqp) # simulate some data, IDs are 1:20 d <- lapply(1:20, random_profile) d <- do.call('rbind', d) # init SoilProfileCollection object depths(d) <- id ~ top + bottom head(horizons(d)) # generate single slice at 10 cm # output is a SoilProfileCollection object s <- dice(d, fm = 10 ~ name + p1 + p2 + p3) # generate single slice at 10 cm, output data.frame s <- dice(d, 10 ~ name + p1 + p2 + p3, SPC = FALSE) # generate integer slices from 0 - 26 cm # note that slices are specified by default as "top-down" # result is a SoilProfileCollection # e.g. the lower depth will always by top + 1 s <- dice(d, fm = 0:25 ~ name + p1 + p2 + p3) par(mar=c(0,1,0,1)) plotSPC(s) # generate slices from 0 - 11 cm, for all variables s <- dice(d, fm = 0:10 ~ .) print(s) # compute percent missing, for each slice, # if all vars are missing, then NA is returned d$p1[1:10] <- NA s <- dice(d, 10 ~ ., SPC = FALSE, pctMissing = TRUE) head(s) ## Not run: ## ## check sliced data ## # test that mean of 1 cm slices property is equal to the # hz-thickness weighted mean value of that property data(sp1) depths(sp1) <- id ~ top + bottom # get the first profile sp1.sub <- sp1[which(profile_id(sp1) == 'P009'), ] # compute hz-thickness wt. mean hz.wt.mean <- with( horizons(sp1.sub), sum((bottom - top) * prop) / sum(bottom - top) ) # hopefully the same value, calculated via slice() s <- dice(sp1.sub, fm = 0:max(sp1.sub) ~ prop) hz.slice.mean <- mean(s$prop, na.rm = TRUE) # they are the same all.equal(hz.slice.mean, hz.wt.mean) ## End(Not run)
library(aqp) # simulate some data, IDs are 1:20 d <- lapply(1:20, random_profile) d <- do.call('rbind', d) # init SoilProfileCollection object depths(d) <- id ~ top + bottom head(horizons(d)) # generate single slice at 10 cm # output is a SoilProfileCollection object s <- dice(d, fm = 10 ~ name + p1 + p2 + p3) # generate single slice at 10 cm, output data.frame s <- dice(d, 10 ~ name + p1 + p2 + p3, SPC = FALSE) # generate integer slices from 0 - 26 cm # note that slices are specified by default as "top-down" # result is a SoilProfileCollection # e.g. the lower depth will always by top + 1 s <- dice(d, fm = 0:25 ~ name + p1 + p2 + p3) par(mar=c(0,1,0,1)) plotSPC(s) # generate slices from 0 - 11 cm, for all variables s <- dice(d, fm = 0:10 ~ .) print(s) # compute percent missing, for each slice, # if all vars are missing, then NA is returned d$p1[1:10] <- NA s <- dice(d, 10 ~ ., SPC = FALSE, pctMissing = TRUE) head(s) ## Not run: ## ## check sliced data ## # test that mean of 1 cm slices property is equal to the # hz-thickness weighted mean value of that property data(sp1) depths(sp1) <- id ~ top + bottom # get the first profile sp1.sub <- sp1[which(profile_id(sp1) == 'P009'), ] # compute hz-thickness wt. mean hz.wt.mean <- with( horizons(sp1.sub), sum((bottom - top) * prop) / sum(bottom - top) ) # hopefully the same value, calculated via slice() s <- dice(sp1.sub, fm = 0:max(sp1.sub) ~ prop) hz.slice.mean <- mean(s$prop, na.rm = TRUE) # they are the same all.equal(hz.slice.mean, hz.wt.mean) ## End(Not run)
Apply Tukey's HSD over 1-unit depth slices.
slicedHSD(object, fm, conf = 0.95)
slicedHSD(object, fm, conf = 0.95)
object |
|
fm |
a formula describing depth sequence, horizon attribute, and site (grouping) attribute. For example 0:100 ~ estimated_oc | taxonname |
conf |
confidence applied in |
D.E. Beaudette and Sharon Perrone
Munsell colors for some common soil minerals.
data(soil_minerals)
data(soil_minerals)
A data frame with 20 observations on the following 5 variables.
mineral name
Munsell color
Munsell hue
Munsell value
Munsell chroma
Soil color and other properties including texture, structure, and consistence are used to distinguish and identify soil horizons (layers) and to group soils according to the soil classification system called Soil Taxonomy. Color development and distribution of color within a soil profile are part of weathering. As rocks containing iron or manganese weather, the elements oxidize. Iron forms small crystals with a yellow or red color, organic matter decomposes into black humus, and manganese forms black mineral deposits. These pigments paint the soil (Michigan State Soil). Color is also affected by the environment: aerobic environments produce sweeping vistas of uniform or subtly changing color, and anaerobic (lacking oxygen), wet environments disrupt color flow with complex, often intriguing patterns and points of accent. With depth below the soil surface, colors usually become lighter, yellower, or redder.
Lynn, W.C. and Pearson, M.J., The Color of Soil, The Science Teacher, May 2000. 2. Schwertmann, U. 1993. Relations Between Iron Oxides, Soil Color, and Soil Formation. "Soil Color". SSSA Special Publication no. 31, pages 51–69.
## Not run: library(aqp) library(ape) library(cluster) library(farver) # load common soil mineral colors data(soil_minerals) # convert Munsell to R colors soil_minerals$col <- munsell2rgb( soil_minerals$hue, soil_minerals$value, soil_minerals$chroma ) # make a grid for plotting n <- ceiling(sqrt(nrow(soil_minerals))) # read from top-left to bottom-right g <- expand.grid(x=1:n, y=n:1)[1:nrow(soil_minerals),] # convert Munsell -> sRGB -> LAB col.rgb <- munsell2rgb( soil_minerals$hue, soil_minerals$value, soil_minerals$chroma, return_triplets = TRUE ) # sRGB values expected to be in the range [0,255] col.rgb <- col.rgb * 255 # convert from sRGB -> CIE LAB col.lab <- convert_colour( col.rgb , from = 'rgb', to = 'lab', white_from = 'D65' ) # keep track of soil mineral names # in a way that will persist in a dist obj row.names(col.lab) <- soil_minerals$mineral # perceptual distance via CIE dE00 d <- compare_colour( from = col.lab, to = col.lab, from_space = 'lab', to_space = 'lab', white_from = 'D65', method = 'CIE2000' ) # matrix -> dist d <- as.dist(d) # divisive hierarchical clustering of LAB coordinates h <- as.hclust(diana(d)) p <- as.phylo(h) # colors, in order based on clustering # starting from top-left min.cols <- rev(soil_minerals$col[h$order]) # mineral names, in order based on clustering # starting from top-left min.names <- rev(soil_minerals$mineral[h$order]) min.munsell <- rev(soil_minerals$color[h$order]) # plot grid of mineral names / colors layout(matrix(c(1, 2), nrow = 1), widths = c(1.25, 1)) par(mar = c(1, 0, 0, 1)) plot(g$x, g$y, pch = 15, cex = 12, axes = FALSE, xlab = '', ylab = '', col = min.cols, xlim = c(0.5, 5.5), ylim = c(1.5, 5.5) ) text(g$x, g$y, min.names, adj = c(0.45, 5.5), cex = 0.75, font = 2) text(g$x, g$y, min.munsell, col = invertLabelColor(min.cols), cex = 0.85, font = 2) title(main = 'Common Soil Pigments', line = -1.75, cex.main = 2) mtext('U. Schwertmann, 1993. SSSA Special Publication no. 31, pages 51--69', side = 1, cex = 0.75, line = -1.5) # dendrogram + tip labels with mineral colors plot(p, cex = 0.85, label.offset = 5, font = 1) tiplabels(pch = 15, cex = 3, offset = 2, col = soil_minerals$col) ## End(Not run)
## Not run: library(aqp) library(ape) library(cluster) library(farver) # load common soil mineral colors data(soil_minerals) # convert Munsell to R colors soil_minerals$col <- munsell2rgb( soil_minerals$hue, soil_minerals$value, soil_minerals$chroma ) # make a grid for plotting n <- ceiling(sqrt(nrow(soil_minerals))) # read from top-left to bottom-right g <- expand.grid(x=1:n, y=n:1)[1:nrow(soil_minerals),] # convert Munsell -> sRGB -> LAB col.rgb <- munsell2rgb( soil_minerals$hue, soil_minerals$value, soil_minerals$chroma, return_triplets = TRUE ) # sRGB values expected to be in the range [0,255] col.rgb <- col.rgb * 255 # convert from sRGB -> CIE LAB col.lab <- convert_colour( col.rgb , from = 'rgb', to = 'lab', white_from = 'D65' ) # keep track of soil mineral names # in a way that will persist in a dist obj row.names(col.lab) <- soil_minerals$mineral # perceptual distance via CIE dE00 d <- compare_colour( from = col.lab, to = col.lab, from_space = 'lab', to_space = 'lab', white_from = 'D65', method = 'CIE2000' ) # matrix -> dist d <- as.dist(d) # divisive hierarchical clustering of LAB coordinates h <- as.hclust(diana(d)) p <- as.phylo(h) # colors, in order based on clustering # starting from top-left min.cols <- rev(soil_minerals$col[h$order]) # mineral names, in order based on clustering # starting from top-left min.names <- rev(soil_minerals$mineral[h$order]) min.munsell <- rev(soil_minerals$color[h$order]) # plot grid of mineral names / colors layout(matrix(c(1, 2), nrow = 1), widths = c(1.25, 1)) par(mar = c(1, 0, 0, 1)) plot(g$x, g$y, pch = 15, cex = 12, axes = FALSE, xlab = '', ylab = '', col = min.cols, xlim = c(0.5, 5.5), ylim = c(1.5, 5.5) ) text(g$x, g$y, min.names, adj = c(0.45, 5.5), cex = 0.75, font = 2) text(g$x, g$y, min.munsell, col = invertLabelColor(min.cols), cex = 0.85, font = 2) title(main = 'Common Soil Pigments', line = -1.75, cex.main = 2) mtext('U. Schwertmann, 1993. SSSA Special Publication no. 31, pages 51--69', side = 1, cex = 0.75, line = -1.5) # dendrogram + tip labels with mineral colors plot(p, cex = 0.85, label.offset = 5, font = 1) tiplabels(pch = 15, cex = 3, offset = 2, col = soil_minerals$col) ## End(Not run)
Generate a color signature for each soil profile in a collection.
soilColorSignature( spc, r = "r", g = "g", b = "b", method = c("colorBucket", "depthSlices", "pam"), pam.k = 3, RescaleLightnessBy = 1, useProportions = TRUE, pigmentNames = c(".white.pigment", ".red.pigment", ".green.pigment", ".yellow.pigment", ".blue.pigment"), apply.fun = lapply )
soilColorSignature( spc, r = "r", g = "g", b = "b", method = c("colorBucket", "depthSlices", "pam"), pam.k = 3, RescaleLightnessBy = 1, useProportions = TRUE, pigmentNames = c(".white.pigment", ".red.pigment", ".green.pigment", ".yellow.pigment", ".blue.pigment"), apply.fun = lapply )
spc |
a |
r |
horizon level attribute containing soil color (sRGB) red values |
g |
horizon level attribute containing soil color (sRGB) green values |
b |
horizon level attribute containing soil color (sRGB) blue values |
method |
algorithm used to compute color signature, |
pam.k |
number of classes to request from |
RescaleLightnessBy |
rescaling factor for CIE LAB L-coordinate |
useProportions |
use proportions or quantities, see details |
pigmentNames |
names for resulting pigment proportions or quantities |
apply.fun |
function passed to |
See the related tutorial.
For the colorBucket
method, a data.frame
object containing:
id column: set according to idname(spc)
.white.pigment
: proportion or quantity of CIE LAB L-values
.red.pigment
: proportion or quantity of CIE LAB positive A-values
.green.pigment
: proportion or quantity of CIE LAB negative A-values
.yellow.pigment
: proportion or quantity of CIE LAB positive B-values
.blue.pigment
: proportion or quantity of CIE LAB negative B-values
Column names can be adjusted with the pigmentNames
argument.
For the depthSlices
method ...
For the pam
method ...
D.E. Beaudette
https://en.wikipedia.org/wiki/Lab_color_space
# trivial example, not very interesting data(sp1) depths(sp1) <- id ~ top + bottom # convert Munsell -> sRGB triplets rgb.data <- munsell2rgb(sp1$hue, sp1$value, sp1$chroma, return_triplets = TRUE) sp1$r <- rgb.data$r sp1$g <- rgb.data$g sp1$b <- rgb.data$b # extract color signature pig <- soilColorSignature(sp1)
# trivial example, not very interesting data(sp1) depths(sp1) <- id ~ top + bottom # convert Munsell -> sRGB triplets rgb.data <- munsell2rgb(sp1$hue, sp1$value, sp1$chroma, return_triplets = TRUE) sp1$r <- rgb.data$r sp1$g <- rgb.data$g sp1$b <- rgb.data$b # extract color signature pig <- soilColorSignature(sp1)
A very simple function for generating labeled swatches of soil colors. Largely based on colorspace::swatchplot
.
soilPalette( colors, lab = colors, lab.cex = 0.75, dynamic.labels = TRUE, x.inset = 0.01, y.inset = 0.01, ... )
soilPalette( colors, lab = colors, lab.cex = 0.75, dynamic.labels = TRUE, x.inset = 0.01, y.inset = 0.01, ... )
colors |
vector of hex colors (e.g. #A66E46FF) |
lab |
vector of labels |
lab.cex |
character scaling for labels |
dynamic.labels |
logical, adjust label colors for maximum contrast via |
x.inset |
horizontal adjustment for labels |
y.inset |
vertical adjustment for labels |
... |
further arguments to |
The result is a simple figure on the active plotting device.
D.E. Beaudette
# maybe useful for teaching about soil color par(mfrow=c(2,1), mar=c(1,1,1,1)) # demonstrate range of Munsell value m <- sprintf('10YR %s/4', 2:8) # convert to hex representation cols <- parseMunsell(m) # plot soilPalette(cols, m) # demonstrate range of Munsell chroma m <- sprintf('10YR 4/%s', 2:8) # convert to hex representation cols <- parseMunsell(m) # plot soilPalette(cols, m)
# maybe useful for teaching about soil color par(mfrow=c(2,1), mar=c(1,1,1,1)) # demonstrate range of Munsell value m <- sprintf('10YR %s/4', 2:8) # convert to hex representation cols <- parseMunsell(m) # plot soilPalette(cols, m) # demonstrate range of Munsell chroma m <- sprintf('10YR 4/%s', 2:8) # convert to hex representation cols <- parseMunsell(m) # plot soilPalette(cols, m)
In general, one should use depths()
to initiate a SoilProfileCollection object from data. However, sometimes there are instances where either an empty, or very specific, object is needed. If that is the case, the general constructor SoilProfileCollection
is available.
SoilProfileCollection( idcol = "id", hzidcol = "hzID", depthcols = c("top", "bottom"), metadata = list(aqp_df_class = "data.frame", aqp_group_by = "", aqp_hzdesgn = "", aqp_hztexcl = "", stringsAsFactors = FALSE), horizons = data.frame(id = character(0), hzID = character(0), top = numeric(0), bottom = numeric(0), stringsAsFactors = FALSE), site = data.frame(id = character(0), stringsAsFactors = FALSE), diagnostic = data.frame(stringsAsFactors = FALSE), restrictions = data.frame(stringsAsFactors = FALSE) )
SoilProfileCollection( idcol = "id", hzidcol = "hzID", depthcols = c("top", "bottom"), metadata = list(aqp_df_class = "data.frame", aqp_group_by = "", aqp_hzdesgn = "", aqp_hztexcl = "", stringsAsFactors = FALSE), horizons = data.frame(id = character(0), hzID = character(0), top = numeric(0), bottom = numeric(0), stringsAsFactors = FALSE), site = data.frame(id = character(0), stringsAsFactors = FALSE), diagnostic = data.frame(stringsAsFactors = FALSE), restrictions = data.frame(stringsAsFactors = FALSE) )
idcol |
character. Profile ID Column Name |
hzidcol |
character. Horizon ID Column Name |
depthcols |
character. length 2 Top and Bottom Depth Column Names |
metadata |
list. metadata including data.frame class in use and depth units |
horizons |
data.frame. An object inheriting from data.frame containing Horizon data. |
site |
data.frame. An object inheriting from data.frame containing Site data. |
diagnostic |
data.frame. An object inheriting from data.frame containing diagnostic feature data. Must contain profile ID. See |
restrictions |
data.frame. An object inheriting from data.frame containing restrictive feature data. Must contain profile ID. See |
After aqp 2.0.2, the @sp
slot was removed from the SoilProfileCollection object. If you run into errors related to old object definitions, use rebuildSPC()
on the problematic object.
idcol
character.
hzidcol
character.
depthcols
character.
metadata
list.
horizons
data.frame.
site
data.frame.
diagnostic
data.frame.
restrictions
data.frame.
Pierre Roudier, Dylan E. Beaudette, Andrew G. Brown
## structure of default, empty SoilProfileCollection str(SoilProfileCollection()) ## use the depths() formula interface to specify ## profile ID, top and bottom depth and set up ## a SPC that is topologically correct and complete d <- do.call('rbind', lapply(1:10, random_profile)) # promote to SoilProfileCollection and plot depths(d) <- id ~ top + bottom plot(d) # split into new SoilProfileCollection objects by index d.1 <- d[1, ] d.2 <- d[2, ] d.345 <- d[3:5, ] # combine profile collections # note that profiles are sorted according to ID d.new <- c(d.345, d.1, d.2) plot(d.new) data(sp1) ## init SoilProfileCollection objects from data.frame depths(sp1) <- id ~ top + bottom ## depth units du <- depth_units(sp1) depth_units(sp1) <- 'in' depth_units(sp1) <- du ## horizon designation column hzdesgnname(sp1) <- "name" hzdesgnname(sp1) ## all designations in an SPC (useful for single profile SPC) hzDesgn(sp1) ## horizon texture class column hztexclname(sp1) <- "texture" hztexclname(sp1) ## get/set metadata on SoilProfileCollection objects # this is a 1-row data.frame m <- metadata(sp1) m$sampler <- 'Dylan' metadata(sp1) <- m ## extract horizon data from SoilProfileCollection objects as data.frame h <- horizons(sp1) # also merge (left-join) of new columns and # replacement of existing columns via horizons<- horizons(sp1) <- h # get number of horizons nrow(sp1) ## getting site-level data site(sp1) ## setting site-level data # site-level data from horizon-level data (stored in @horizons) site(sp1) <- ~ group # make some fake site data, and append from data.frame # a matching ID column must be present in both @site and new data # note that IDs should all be character class d <- data.frame(id=profile_id(sp1), p=runif(n=length(sp1)), stringsAsFactors=FALSE) site(sp1) <- d # edit horizon depths horizonDepths(sp1) <- c('t', 'b') horizonDepths(sp1) # edit profile IDs p <- sprintf("%s-new", profile_id(sp1)) profile_id(sp1) <- p profile_id(sp1)
## structure of default, empty SoilProfileCollection str(SoilProfileCollection()) ## use the depths() formula interface to specify ## profile ID, top and bottom depth and set up ## a SPC that is topologically correct and complete d <- do.call('rbind', lapply(1:10, random_profile)) # promote to SoilProfileCollection and plot depths(d) <- id ~ top + bottom plot(d) # split into new SoilProfileCollection objects by index d.1 <- d[1, ] d.2 <- d[2, ] d.345 <- d[3:5, ] # combine profile collections # note that profiles are sorted according to ID d.new <- c(d.345, d.1, d.2) plot(d.new) data(sp1) ## init SoilProfileCollection objects from data.frame depths(sp1) <- id ~ top + bottom ## depth units du <- depth_units(sp1) depth_units(sp1) <- 'in' depth_units(sp1) <- du ## horizon designation column hzdesgnname(sp1) <- "name" hzdesgnname(sp1) ## all designations in an SPC (useful for single profile SPC) hzDesgn(sp1) ## horizon texture class column hztexclname(sp1) <- "texture" hztexclname(sp1) ## get/set metadata on SoilProfileCollection objects # this is a 1-row data.frame m <- metadata(sp1) m$sampler <- 'Dylan' metadata(sp1) <- m ## extract horizon data from SoilProfileCollection objects as data.frame h <- horizons(sp1) # also merge (left-join) of new columns and # replacement of existing columns via horizons<- horizons(sp1) <- h # get number of horizons nrow(sp1) ## getting site-level data site(sp1) ## setting site-level data # site-level data from horizon-level data (stored in @horizons) site(sp1) <- ~ group # make some fake site data, and append from data.frame # a matching ID column must be present in both @site and new data # note that IDs should all be character class d <- data.frame(id=profile_id(sp1), p=runif(n=length(sp1)), stringsAsFactors=FALSE) site(sp1) <- d # edit horizon depths horizonDepths(sp1) <- c('t', 'b') horizonDepths(sp1) # edit profile IDs p <- sprintf("%s-new", profile_id(sp1)) profile_id(sp1) <- p profile_id(sp1)
A list that contains a snapshot of the values generated using the logic from the particle size estimator calculation in NASIS, the average values per texture class, and average rock fragment values by textural modifier.
data(soiltexture)
data(soiltexture)
A list with 3 data frames. The first named values which contains values for sand, silt and clay by texture class. The second with average values for sand, silt and clay per texture class. The third has fragvoltot low, rv and high values for texmod.
clay percentage of the fine earth fraction, a integer vector
sand percentage of the fine earth fraction, a integer vector
silt percentage of the fine earth fraction, a integer vector
texture class, a character vector
textural modifiers, a character vector
Suggested color palettes for USDA soil texture classes, ranked according to average plant-available water holding capacity. The default color mapping schema is based on a palette used by SoilWeb applications.
soilTextureColorPal(simplify = FALSE, schema = "soilweb")
soilTextureColorPal(simplify = FALSE, schema = "soilweb")
simplify |
logical, return the base 12 ( |
schema |
select mapping between soil texture classes, and colors, currently limited to 'soilweb' |
data.frame
from soil texture class codes and colors
D.E. Beaudette, Mike Walkinshaw, A.T. O'Geen
# base 12 soil texture classes # ranked by plant available water-holding capacity d <- soilTextureColorPal(simplify = TRUE) soilPalette(d$color, lab = d$class, lab.cex = 1) # full 21 soil texture classes # ranked by plant available water-holding capacity d <- soilTextureColorPal(simplify = FALSE) soilPalette(d$color, lab = d$class, lab.cex = 1)
# base 12 soil texture classes # ranked by plant available water-holding capacity d <- soilTextureColorPal(simplify = TRUE) soilPalette(d$color, lab = d$class, lab.cex = 1) # full 21 soil texture classes # ranked by plant available water-holding capacity d <- soilTextureColorPal(simplify = FALSE) soilPalette(d$color, lab = d$class, lab.cex = 1)
Generate a vector of USDA soil texture codes or class names, sorted according to approximate particle size
SoilTextureLevels(which = "codes", simplify = FALSE)
SoilTextureLevels(which = "codes", simplify = FALSE)
which |
'codes' (texture codes) or 'names' (texture class names) |
simplify |
Return 12-class factor levels ( |
an ordered factor
Field Book for Describing and Sampling Soils, version 3.0
# class codes SoilTextureLevels() # class names SoilTextureLevels(which = 'names') # simpler class names SoilTextureLevels(which = 'names', simplify = TRUE)
# class codes SoilTextureLevels() # class names SoilTextureLevels(which = 'names') # simpler class names SoilTextureLevels(which = 'names', simplify = TRUE)
Soil profile data from Pinnacles National Monument, CA.
A data frame with 60 observations on the following 21 variables.
a numeric vector
a character vector
a numeric vector
a numeric vector
a character vector
a character vector
a character vector
a character vector
a numeric vector
a character vector
a character vector
a character vector
a character vector
a character vector
a numeric vector
a character vector
a numeric vector
a numeric vector
https://casoilresource.lawr.ucdavis.edu/
data(sp1) # convert colors from Munsell to hex-encoded RGB sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # re-sample each profile into 1 cm (thick) depth slices # for the variables 'prop', 'name', 'soil_color' # result is a SoilProfileCollection object s <- dice(sp1, 0:25 ~ prop + name + soil_color) # plot, note slices plot(s) # aggregate all profiles along 1 cm depth slices, # using data from column 'prop' s1 <- slab(sp1, fm= ~ prop) # check median & IQR library(lattice) xyplot(top ~ p.q50 + p.q25 + p.q75, data=s1, type='S', horizontal=TRUE, col=1, lty=c(1,2,2), panel=panel.superpose, ylim=c(110,-5), asp=2)
data(sp1) # convert colors from Munsell to hex-encoded RGB sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma)) # promote to SoilProfileCollection depths(sp1) <- id ~ top + bottom site(sp1) <- ~ group # re-sample each profile into 1 cm (thick) depth slices # for the variables 'prop', 'name', 'soil_color' # result is a SoilProfileCollection object s <- dice(sp1, 0:25 ~ prop + name + soil_color) # plot, note slices plot(s) # aggregate all profiles along 1 cm depth slices, # using data from column 'prop' s1 <- slab(sp1, fm= ~ prop) # check median & IQR library(lattice) xyplot(top ~ p.q50 + p.q25 + p.q75, data=s1, type='S', horizontal=TRUE, col=1, lty=c(1,2,2), panel=panel.superpose, ylim=c(110,-5), asp=2)
A collection of 18 soil profiles, consisting of select soil morphologic attributes, associated with a stratigraphic study conducted near Honcut Creek, California.
A data frame with 154 observations on the following 21 variables.
profile id
dated surface
horizon top in cm
horizon bottom in cm
horizon lower boundary distinctness class
horizon lower boundary topography class
horizon name
USDA soil texture class
field-estimated clay content
soil structure grade
soil structure size
soil structure type
stickiness
plasticity
field-measured pH
Munsell hue
Munsell value
Munsell chroma
RGB red component
RGB green component
RGB blue component
R-friendly encoding of soil color
Dylan E. Beaudette
Busacca, Alan J.; Singer, Michael J.; Verosub, Kenneth L. 1989. Late Cenozoic stratigraphy of the Feather and Yuba rivers area, California, with a section on soil development in mixed alluvium at Honcut Creek. USGS Bulletin 1590-G.
https://casoilresource.lawr.ucdavis.edu/
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) data(sp2) # convert into SoilProfileCollection object depths(sp2) <- id ~ top + bottom # transfer site-level data site(sp2) <- ~ surface # generate a new plotting order, based on the dated surface each soil was described on p.order <- order(sp2$surface) # plot par(mar=c(1,0,3,0)) plot(sp2, plot.order=p.order) # setup multi-figure output par(mfrow=c(2,1), mar=c(0,0,1,0)) # truncate plot to 200 cm depth plot(sp2, plot.order=p.order, max.depth=200) abline(h=200, lty=2, lwd=2) # compute numerical distances between profiles # based on select horizon-level properties, to a depth of 200 cm d <- NCSP(sp2, vars=c('prop','field_ph','hue'), maxDepth = 100, k = 0) # plot dendrogram with ape package: if(require(ape) & require(cluster)) { h <- diana(d) p <- as.phylo(as.hclust(h)) plot(p, cex=0.75, label.offset=0.01, font=1, direct='down', srt=90, adj=0.5, y.lim=c(-0.125, 0.5)) # add in the dated surface type via color tiplabels(col=as.numeric(sp2$surface), pch=15) # based on distance matrix values, YMMV legend('topleft', legend=levels(sp2$surface), col=1:6, pch=15, bty='n', bg='white', cex=0.75) }
# keep examples from using more than 2 cores data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2)) data(sp2) # convert into SoilProfileCollection object depths(sp2) <- id ~ top + bottom # transfer site-level data site(sp2) <- ~ surface # generate a new plotting order, based on the dated surface each soil was described on p.order <- order(sp2$surface) # plot par(mar=c(1,0,3,0)) plot(sp2, plot.order=p.order) # setup multi-figure output par(mfrow=c(2,1), mar=c(0,0,1,0)) # truncate plot to 200 cm depth plot(sp2, plot.order=p.order, max.depth=200) abline(h=200, lty=2, lwd=2) # compute numerical distances between profiles # based on select horizon-level properties, to a depth of 200 cm d <- NCSP(sp2, vars=c('prop','field_ph','hue'), maxDepth = 100, k = 0) # plot dendrogram with ape package: if(require(ape) & require(cluster)) { h <- diana(d) p <- as.phylo(as.hclust(h)) plot(p, cex=0.75, label.offset=0.01, font=1, direct='down', srt=90, adj=0.5, y.lim=c(-0.125, 0.5)) # add in the dated surface type via color tiplabels(col=as.numeric(sp2$surface), pch=15) # based on distance matrix values, YMMV legend('topleft', legend=levels(sp2$surface), col=1:6, pch=15, bty='n', bg='white', cex=0.75) }
Soil samples from 10 soil profiles, taken from the Sierra Foothill Region of California.
A data frame with 46 observations on the following 15 variables.
soil id
horizon upper boundary (cm)
horizon lower boundary (cm)
clay content
CEC by amonium acetate at pH 7
pH in 1:1 water-soil mixture
total carbon percent
Munsell hue (dry)
Munsell value (dry)
Munsell chroma (dry)
horizon midpoint (cm)
natural log of total carbon percent
color: l-coordinate, CIE-LAB colorspace (dry)
color: a-coordinate, CIE-LAB colorspace (dry)
color: b-coordinate, CIE-LAB colorspace (dry)
horizon name
horizon color
These data were collected to support research funded by the Kearney Foundation of Soil Science.
https://casoilresource.lawr.ucdavis.edu/
## this example investigates the concept of a "median profile" # required packages if (require(ape) & require(cluster)) { data(sp3) # generate a RGB version of soil colors # and convert to HSV for aggregation sp3$h <- NA sp3$s <- NA sp3$v <- NA sp3.rgb <- with(sp3, munsell2rgb(hue, value, chroma, return_triplets = TRUE)) sp3[, c('h', 's', 'v')] <- t(with(sp3.rgb, rgb2hsv(r, g, b, maxColorValue = 1))) # promote to SoilProfileCollection depths(sp3) <- id ~ top + bottom # aggregate across entire collection a <- slab(sp3, fm = ~ clay + cec + ph + h + s + v, slab.structure = 10) # check str(a) # convert back to wide format library(data.table) a.wide.q25 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q25')) a.wide.q50 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q50')) a.wide.q75 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q75')) # add a new id for the 25th, 50th, and 75th percentile pedons a.wide.q25$id <- 'Q25' a.wide.q50$id <- 'Q50' a.wide.q75$id <- 'Q75' # combine original data with "mean profile" vars <- c('top', 'bottom', 'id', 'clay', 'cec', 'ph', 'h', 's', 'v') # make data.frame version of sp3 sp3.df <- as(sp3, 'data.frame') sp3.grouped <- as.data.frame(rbind(as.data.table(horizons(sp3))[, .SD, .SDcol = vars], a.wide.q25[, .SD, .SDcol = vars], a.wide.q50[, .SD, .SDcol = vars], a.wide.q75[, .SD, .SDcol = vars])) # re-constitute the soil color from HSV triplets # convert HSV back to standard R colors sp3.grouped$soil_color <- with(sp3.grouped, hsv(h, s, v)) # give each horizon a name sp3.grouped$name <- paste( round(sp3.grouped$clay), '/' , round(sp3.grouped$cec), '/', round(sp3.grouped$ph, 1) ) # first promote to SoilProfileCollection depths(sp3.grouped) <- id ~ top + bottom plot(sp3.grouped) ## perform comparison, and convert to phylo class object ## D is rescaled to [0,] d <- NCSP( sp3.grouped, vars = c('clay', 'cec', 'ph'), maxDepth = 100, k = 0.01 ) h <- agnes(d, method = 'ward') p <- ladderize(as.phylo(as.hclust(h))) # look at distance plot-- just the median profile plot_distance_graph(d, 12) # similarity relative to median profile (profile #12) round(1 - (as.matrix(d)[12, ] / max(as.matrix(d)[12, ])), 2) ## make dendrogram + soil profiles # setup plot: note that D has a scale of [0,1] par(mar = c(1, 1, 1, 1)) p.plot <- plot(p, cex = 0.8, label.offset = 3, direction = 'up', y.lim = c(200, 0), x.lim = c(1.25, length(sp3.grouped) + 1), show.tip.label = FALSE) # get the last plot geometry lastPP <- get("last_plot.phylo", envir = .PlotPhyloEnv) # the original labels, and new (indexed) order of pedons in dendrogram d.labels <- attr(d, 'Labels') new_order <- sapply(1:lastPP$Ntip, function(i) which(as.integer(lastPP$xx[1:lastPP$Ntip]) == i)) # plot the profiles, in the ordering defined by the dendrogram # with a couple fudge factors to make them fit plotSPC( sp3.grouped, color = "soil_color", plot.order = new_order, y.offset = max(lastPP$yy) + 10, width = 0.1, cex.names = 0.5, add = TRUE ) }
## this example investigates the concept of a "median profile" # required packages if (require(ape) & require(cluster)) { data(sp3) # generate a RGB version of soil colors # and convert to HSV for aggregation sp3$h <- NA sp3$s <- NA sp3$v <- NA sp3.rgb <- with(sp3, munsell2rgb(hue, value, chroma, return_triplets = TRUE)) sp3[, c('h', 's', 'v')] <- t(with(sp3.rgb, rgb2hsv(r, g, b, maxColorValue = 1))) # promote to SoilProfileCollection depths(sp3) <- id ~ top + bottom # aggregate across entire collection a <- slab(sp3, fm = ~ clay + cec + ph + h + s + v, slab.structure = 10) # check str(a) # convert back to wide format library(data.table) a.wide.q25 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q25')) a.wide.q50 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q50')) a.wide.q75 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q75')) # add a new id for the 25th, 50th, and 75th percentile pedons a.wide.q25$id <- 'Q25' a.wide.q50$id <- 'Q50' a.wide.q75$id <- 'Q75' # combine original data with "mean profile" vars <- c('top', 'bottom', 'id', 'clay', 'cec', 'ph', 'h', 's', 'v') # make data.frame version of sp3 sp3.df <- as(sp3, 'data.frame') sp3.grouped <- as.data.frame(rbind(as.data.table(horizons(sp3))[, .SD, .SDcol = vars], a.wide.q25[, .SD, .SDcol = vars], a.wide.q50[, .SD, .SDcol = vars], a.wide.q75[, .SD, .SDcol = vars])) # re-constitute the soil color from HSV triplets # convert HSV back to standard R colors sp3.grouped$soil_color <- with(sp3.grouped, hsv(h, s, v)) # give each horizon a name sp3.grouped$name <- paste( round(sp3.grouped$clay), '/' , round(sp3.grouped$cec), '/', round(sp3.grouped$ph, 1) ) # first promote to SoilProfileCollection depths(sp3.grouped) <- id ~ top + bottom plot(sp3.grouped) ## perform comparison, and convert to phylo class object ## D is rescaled to [0,] d <- NCSP( sp3.grouped, vars = c('clay', 'cec', 'ph'), maxDepth = 100, k = 0.01 ) h <- agnes(d, method = 'ward') p <- ladderize(as.phylo(as.hclust(h))) # look at distance plot-- just the median profile plot_distance_graph(d, 12) # similarity relative to median profile (profile #12) round(1 - (as.matrix(d)[12, ] / max(as.matrix(d)[12, ])), 2) ## make dendrogram + soil profiles # setup plot: note that D has a scale of [0,1] par(mar = c(1, 1, 1, 1)) p.plot <- plot(p, cex = 0.8, label.offset = 3, direction = 'up', y.lim = c(200, 0), x.lim = c(1.25, length(sp3.grouped) + 1), show.tip.label = FALSE) # get the last plot geometry lastPP <- get("last_plot.phylo", envir = .PlotPhyloEnv) # the original labels, and new (indexed) order of pedons in dendrogram d.labels <- attr(d, 'Labels') new_order <- sapply(1:lastPP$Ntip, function(i) which(as.integer(lastPP$xx[1:lastPP$Ntip]) == i)) # plot the profiles, in the ordering defined by the dendrogram # with a couple fudge factors to make them fit plotSPC( sp3.grouped, color = "soil_color", plot.order = new_order, y.offset = max(lastPP$yy) + 10, width = 0.1, cex.names = 0.5, add = TRUE ) }
Soil Chemical Data from Serpentinitic Soils of California
A data frame with 30 observations on the following 13 variables.
site name
horizon designation
horizon top boundary in cm
horizon bottom boundary in cm
exchangeable K in c mol/kg
exchangeable Mg in cmol/kg
exchangeable Ca in cmol/kg
cation exchange capacity (NH4OAc at pH 7)
extractable Ca:Mg ratio
sand content by weight percentage
silt content by weight percentage
clay content by weight percentage
>2mm fraction by volume percentage
Selected soil physical and chemical data from (McGahan et al., 2009).
https://www.soils.org/publications/sssaj/articles/73/6/2087
McGahan, D.G., Southard, R.J, Claassen, V.P. 2009. Plant-Available Calcium Varies Widely in Soils on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.
# load sample data set, a simple data.frame object with horizon-level data from 10 profiles library(aqp) data(sp4) str(sp4) sp4$idbak <- sp4$id # upgrade to SoilProfileCollection # 'id' is the name of the column containing the profile ID # 'top' is the name of the column containing horizon upper boundaries # 'bottom' is the name of the column containing horizon lower boundaries depths(sp4) <- id ~ top + bottom # check it out class(sp4) # class name str(sp4) # internal structure # check integrity of site:horizon linkage spc_in_sync(sp4) # check horizon depth logic checkHzDepthLogic(sp4) # inspect object properties idname(sp4) # self-explanitory horizonDepths(sp4) # self-explanitory # you can change these: depth_units(sp4) # defaults to 'cm' metadata(sp4) # not much to start with # alter the depth unit metadata depth_units(sp4) <- 'inches' # units are really 'cm' # more generic interface for adjusting metadata # add attributes to metadata list metadata(sp4)$describer <- 'DGM' metadata(sp4)$date <- as.Date('2009-01-01') metadata(sp4)$citation <- 'McGahan, D.G., Southard, R.J, Claassen, V.P. 2009. Plant-Available Calcium Varies Widely in Soils on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.' depth_units(sp4) <- 'cm' # fix depth units, back to 'cm' # further inspection with common function overloads length(sp4) # number of profiles in the collection nrow(sp4) # number of horizons in the collection names(sp4) # column names min(sp4) # shallowest profile depth in collection max(sp4) # deepest profile depth in collection # extraction of soil profile components profile_id(sp4) # vector of profile IDs horizons(sp4) # horizon data # extraction of specific horizon attributes sp4$clay # vector of clay content # subsetting SoilProfileCollection objects sp4[1, ] # first profile in the collection sp4[, 1] # first horizon from each profile # basic plot method, highly customizable: see manual page ?plotSPC plot(sp4) # inspect plotting area, very simple to overlay graphical elements abline(v=1:length(sp4), lty=3, col='blue') # profiles are centered at integers, from 1 to length(obj) axis(1, line=-1.5, at=1:10, cex.axis=0.75, font=4, col='blue', lwd=2) # y-axis is based on profile depths axis(2, line=-1, at=pretty(1:max(sp4)), cex.axis=0.75, font=4, las=1, col='blue', lwd=2) # symbolize soil properties via color par(mar=c(0,0,4,0)) plot(sp4, color='clay') plot(sp4, color='CF') # apply a function to each profile, returning a single value per profile, # in the same order as profile_id(sp4) soil.depths <- profileApply(sp4, max) # recall that max() gives the depth of a soil profile # check that the order is correct all.equal(names(soil.depths), profile_id(sp4)) # a vector of values that is the same length as the number of profiles # can be stored into site-level data sp4$depth <- soil.depths # check: looks good max(sp4[1, ]) == sp4$depth[1] # extract site-level data site(sp4) # as a data.frame sp4$depth # specific columns as a vector # use site-level data to alter plotting order new.order <- order(sp4$depth) # the result is an index of rank par(mar=c(0,0,0,0)) plot(sp4, plot.order=new.order) # deconstruct SoilProfileCollection into a data.frame, with horizon+site data as(sp4, 'data.frame')
# load sample data set, a simple data.frame object with horizon-level data from 10 profiles library(aqp) data(sp4) str(sp4) sp4$idbak <- sp4$id # upgrade to SoilProfileCollection # 'id' is the name of the column containing the profile ID # 'top' is the name of the column containing horizon upper boundaries # 'bottom' is the name of the column containing horizon lower boundaries depths(sp4) <- id ~ top + bottom # check it out class(sp4) # class name str(sp4) # internal structure # check integrity of site:horizon linkage spc_in_sync(sp4) # check horizon depth logic checkHzDepthLogic(sp4) # inspect object properties idname(sp4) # self-explanitory horizonDepths(sp4) # self-explanitory # you can change these: depth_units(sp4) # defaults to 'cm' metadata(sp4) # not much to start with # alter the depth unit metadata depth_units(sp4) <- 'inches' # units are really 'cm' # more generic interface for adjusting metadata # add attributes to metadata list metadata(sp4)$describer <- 'DGM' metadata(sp4)$date <- as.Date('2009-01-01') metadata(sp4)$citation <- 'McGahan, D.G., Southard, R.J, Claassen, V.P. 2009. Plant-Available Calcium Varies Widely in Soils on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.' depth_units(sp4) <- 'cm' # fix depth units, back to 'cm' # further inspection with common function overloads length(sp4) # number of profiles in the collection nrow(sp4) # number of horizons in the collection names(sp4) # column names min(sp4) # shallowest profile depth in collection max(sp4) # deepest profile depth in collection # extraction of soil profile components profile_id(sp4) # vector of profile IDs horizons(sp4) # horizon data # extraction of specific horizon attributes sp4$clay # vector of clay content # subsetting SoilProfileCollection objects sp4[1, ] # first profile in the collection sp4[, 1] # first horizon from each profile # basic plot method, highly customizable: see manual page ?plotSPC plot(sp4) # inspect plotting area, very simple to overlay graphical elements abline(v=1:length(sp4), lty=3, col='blue') # profiles are centered at integers, from 1 to length(obj) axis(1, line=-1.5, at=1:10, cex.axis=0.75, font=4, col='blue', lwd=2) # y-axis is based on profile depths axis(2, line=-1, at=pretty(1:max(sp4)), cex.axis=0.75, font=4, las=1, col='blue', lwd=2) # symbolize soil properties via color par(mar=c(0,0,4,0)) plot(sp4, color='clay') plot(sp4, color='CF') # apply a function to each profile, returning a single value per profile, # in the same order as profile_id(sp4) soil.depths <- profileApply(sp4, max) # recall that max() gives the depth of a soil profile # check that the order is correct all.equal(names(soil.depths), profile_id(sp4)) # a vector of values that is the same length as the number of profiles # can be stored into site-level data sp4$depth <- soil.depths # check: looks good max(sp4[1, ]) == sp4$depth[1] # extract site-level data site(sp4) # as a data.frame sp4$depth # specific columns as a vector # use site-level data to alter plotting order new.order <- order(sp4$depth) # the result is an index of rank par(mar=c(0,0,0,0)) plot(sp4, plot.order=new.order) # deconstruct SoilProfileCollection into a data.frame, with horizon+site data as(sp4, 'data.frame')
296 Soil Profiles from the La Rochelle region of France (F. Carre and Girard, 2002)
SoilProfileCollection
object
These data are c/o F. Carre ([email protected]).
296 Soil Profiles from the La Rochelle region of France (F. Carre and Girard, 2002). These data can be found on the OSACA project page (http://eusoils.jrc.ec.europa.eu/projects/OSACA/).
F. Carre, M.C. Girard. 2002. Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes. Geoderma. 110: 241–263.
## Not run: library(scales) data(sp5) par(mar=c(1,1,1,1)) # plot a random sampling of profiles s <- sample(1:length(sp5), size=25) plot(sp5[s, ], divide.hz=FALSE) # plot the first 100 profiles, as 4 rows of 25, hard-coding the max depth layout(matrix(c(1,2,3,4), ncol=1), height=c(0.25,0.25,0.25,0.25)) plot(sp5[1:25, ], max.depth=300) plot(sp5[26:50, ], max.depth=300) plot(sp5[51:75, ], max.depth=300) plot(sp5[76:100, ], max.depth=300) # 4x1 matrix of plotting areas layout(matrix(c(1,2,3,4), ncol=1), height=c(0.25,0.25,0.25,0.25)) # plot profiles, with points added to the mid-points of randomly selected horizons sub <- sp5[1:25, ] plot(sub, max.depth=300) ; mtext('Set 1', 2, line=-0.5, font=2) y.p <- profileApply(sub, function(x) { s <- sample(1:nrow(x), 1) h <- horizons(x); with(h[s,], (top+bottom)/2) }) points(1:25, y.p, bg='white', pch=21) # plot profiles, with arrows pointing to profile bottoms sub <- sp5[26:50, ] plot(sub, max.depth=300); mtext('Set 2', 2, line=-0.5, font=2) y.a <- profileApply(sub, function(x) max(x)) arrows(1:25, y.a-50, 1:25, y.a, len=0.1, col='white') # plot profiles, with points connected by lines: ideally reflecting some kind of measured data sub <- sp5[51:75, ] plot(sub, max.depth=300); mtext('Set 3', 2, line=-0.5, font=2) y.p <- 20*(sin(1:25) + 2*cos(1:25) + 5) points(1:25, y.p, bg='white', pch=21) lines(1:25, y.p, lty=2) # plot profiles, with polygons connecting horizons with max clay content (+/-) 10 cm sub <- sp5[76:100, ] y.clay.max <- profileApply(sub, function(x) { i <- which.max(x$clay) h <- horizons(x) with(h[i, ], (top+bottom)/2) } ) plot(sub, max.depth=300); mtext('Set 4', 2, line=-0.5, font=2) polygon(c(1:25, 25:1), c(y.clay.max-10, rev(y.clay.max+10)), border='black', col=rgb(0,0,0.8, alpha=0.25)) points(1:25, y.clay.max, pch=21, bg='white') # close plot dev.off() # plotting parameters yo <- 100 # y-offset sf <- 0.65 # scaling factor # plot profile sketches par(mar=c(0,0,0,0)) plot(sp5[1:25, ], max.depth=300, y.offset=yo, scaling.factor=sf) # optionally add describe plotting area above profiles with lines # abline(h=c(0,90,100, (300*sf)+yo), lty=2) # simulate an environmental variable associated with profiles (elevation, etc.) r <- vector(mode='numeric', length=25) r[1] <- -50 ; for(i in 2:25) {r[i] <- r[i-1] + rnorm(mean=-1, sd=25, n=1)} # rescale r <- rescale(r, to=c(80, 0)) # illustrate gradient with points/lines/arrows lines(1:25, r) points(1:25, r, pch=16) arrows(1:25, r, 1:25, 95, len=0.1) # add scale for simulated gradient axis(2, at=pretty(0:80), labels=rev(pretty(0:80)), line=-1, cex.axis=0.75, las=2) # depict a secondary environmental gradient with polygons (water table depth, etc.) polygon(c(1:25, 25:1), c((100-r)+150, rep((300*sf)+yo, times=25)), border='black', col=rgb(0,0,0.8, alpha=0.25)) ## End(Not run)
## Not run: library(scales) data(sp5) par(mar=c(1,1,1,1)) # plot a random sampling of profiles s <- sample(1:length(sp5), size=25) plot(sp5[s, ], divide.hz=FALSE) # plot the first 100 profiles, as 4 rows of 25, hard-coding the max depth layout(matrix(c(1,2,3,4), ncol=1), height=c(0.25,0.25,0.25,0.25)) plot(sp5[1:25, ], max.depth=300) plot(sp5[26:50, ], max.depth=300) plot(sp5[51:75, ], max.depth=300) plot(sp5[76:100, ], max.depth=300) # 4x1 matrix of plotting areas layout(matrix(c(1,2,3,4), ncol=1), height=c(0.25,0.25,0.25,0.25)) # plot profiles, with points added to the mid-points of randomly selected horizons sub <- sp5[1:25, ] plot(sub, max.depth=300) ; mtext('Set 1', 2, line=-0.5, font=2) y.p <- profileApply(sub, function(x) { s <- sample(1:nrow(x), 1) h <- horizons(x); with(h[s,], (top+bottom)/2) }) points(1:25, y.p, bg='white', pch=21) # plot profiles, with arrows pointing to profile bottoms sub <- sp5[26:50, ] plot(sub, max.depth=300); mtext('Set 2', 2, line=-0.5, font=2) y.a <- profileApply(sub, function(x) max(x)) arrows(1:25, y.a-50, 1:25, y.a, len=0.1, col='white') # plot profiles, with points connected by lines: ideally reflecting some kind of measured data sub <- sp5[51:75, ] plot(sub, max.depth=300); mtext('Set 3', 2, line=-0.5, font=2) y.p <- 20*(sin(1:25) + 2*cos(1:25) + 5) points(1:25, y.p, bg='white', pch=21) lines(1:25, y.p, lty=2) # plot profiles, with polygons connecting horizons with max clay content (+/-) 10 cm sub <- sp5[76:100, ] y.clay.max <- profileApply(sub, function(x) { i <- which.max(x$clay) h <- horizons(x) with(h[i, ], (top+bottom)/2) } ) plot(sub, max.depth=300); mtext('Set 4', 2, line=-0.5, font=2) polygon(c(1:25, 25:1), c(y.clay.max-10, rev(y.clay.max+10)), border='black', col=rgb(0,0,0.8, alpha=0.25)) points(1:25, y.clay.max, pch=21, bg='white') # close plot dev.off() # plotting parameters yo <- 100 # y-offset sf <- 0.65 # scaling factor # plot profile sketches par(mar=c(0,0,0,0)) plot(sp5[1:25, ], max.depth=300, y.offset=yo, scaling.factor=sf) # optionally add describe plotting area above profiles with lines # abline(h=c(0,90,100, (300*sf)+yo), lty=2) # simulate an environmental variable associated with profiles (elevation, etc.) r <- vector(mode='numeric', length=25) r[1] <- -50 ; for(i in 2:25) {r[i] <- r[i-1] + rnorm(mean=-1, sd=25, n=1)} # rescale r <- rescale(r, to=c(80, 0)) # illustrate gradient with points/lines/arrows lines(1:25, r) points(1:25, r, pch=16) arrows(1:25, r, 1:25, 95, len=0.1) # add scale for simulated gradient axis(2, at=pretty(0:80), labels=rev(pretty(0:80)), line=-1, cex.axis=0.75, las=2) # depict a secondary environmental gradient with polygons (water table depth, etc.) polygon(c(1:25, 25:1), c((100-r)+150, rep((300*sf)+yo, times=25)), border='black', col=rgb(0,0,0.8, alpha=0.25)) ## End(Not run)
Soil Physical and Chemical Data from Manganiferous Soils (Bourgault and Rabenhorst, 2011)
A data frame with 30 observations on the following 13 variables.
pedon name
horizon designation
horizon top boundary in cm
horizon bottom boundary in cm
moist soil color in Munsell notation
USDA soil texture class
sand content by weight percentage
silt content by weight percentage
clay content by weight percentage
DCB-extracted Fe in g/kg (see citation)
DCB-extracted Mn in g/kg (see citation)
total organic carbon as g/kg
measured in 1:1 H20 slurry
bulk density (g/cc), clod method
Selected soil physical and chemical data from (Bourgault and Rabenhorst, 2011).
http://www.sciencedirect.com/science/article/pii/S0016706111001972
Rebecca R. Bourgault, Martin C. Rabenhorst. 2011. Genesis and characterization of manganiferous soils in the Eastern Piedmont, USA. Geoderma. 165:84-94.
# setup environment library(aqp) data(sp6) # init SPC depths(sp6) <- id ~ top + bottom # convert non-standard Munsell colors sp6$soil_color <- getClosestMunsellChip(sp6$color) # profile sketches par(mar=c(0,0,3,0)) plot(sp6, color='soil_color') plot(sp6, color='Mn') plot(sp6, color='Fe') plot(sp6, color='pH') plot(sp6, color='texture')
# setup environment library(aqp) data(sp6) # init SPC depths(sp6) <- id ~ top + bottom # convert non-standard Munsell colors sp6$soil_color <- getClosestMunsellChip(sp6$color) # profile sketches par(mar=c(0,0,3,0)) plot(sp6, color='soil_color') plot(sp6, color='Mn') plot(sp6, color='Fe') plot(sp6, color='pH') plot(sp6, color='texture')
Determine "state" of SoilProfileCollection before or after major modifications of site or horizon slot contents.
Two logical checks are performed on the site and horizon tables, and a third element valid
returns TRUE
when both checks are TRUE
.
Check 1: Same number of sites in site as number of sites in horizons. No intermingling of IDs, no orphan horizons, no sites without horizons (for now)
Check 2: Site IDs match coalesced profile ID from horizons. Ensures the same relative ordering, but horizons still may be out of order within profiles
spc_in_sync(object)
spc_in_sync(object)
object |
A SoilProfileCollection |
data.frame
Andrew G. Brown
data(sp5) spc_in_sync(sp5)
data(sp5) spc_in_sync(sp5)
A SoilProfileCollection
with overlapping horizons, derived from a Dynamic Soil Properties project.
data(SPC.with.overlap)
data(SPC.with.overlap)
A SoilProfileCollection
mpspline2::mpspline()
Generate mass-preserving splines for any numeric attribute in a SoilProfileCollection using mpspline2::mpspline()
. mpspline2 implements the method described in Bishop et al. (1999). Currently this function only works with a single var_name
at a time.
## S4 method for signature 'SoilProfileCollection' spc2mpspline( object, var_name = NULL, method = c("est_1cm", "est_icm", "est_dcm"), pattern = "R|Cr|Cd|qm", hzdesgn = NULL, ... )
## S4 method for signature 'SoilProfileCollection' spc2mpspline( object, var_name = NULL, method = c("est_1cm", "est_icm", "est_dcm"), pattern = "R|Cr|Cd|qm", hzdesgn = NULL, ... )
object |
A SoilProfileCollection |
var_name |
Column name in |
method |
Options include "est_1cm" (default; 1cm estimates), "est_icm" (estimates over original layer boundaries), "est_dcm" (estimates over constant interval, specified with |
pattern |
Regex pattern to match for bottom of profile (passed to |
hzdesgn |
Column name in |
... |
Additional arguments to |
This function now relies on the missing data checks provided by the mpspline2 package. See attr(..., 'removed')
to see whole profiles that were removed from the set. Horizons containing NA
in the property of interest are dropped with a message.
Data completeness is assessed and the input SoilProfileCollection is filtered and truncated to create a container for the results from mpspline2::mpspline()
.
A SoilProfileCollection with 1cm slices. Spline variables are in columns prefixed with "spline_" and RMSE/RMSE_IQR are in columns prefixed with "rmse_". If any profiles were removed from the collection, their profile IDs are stored in attr(result, 'removed')
.
Andrew G. Brown
Bishop, T.F.A., McBratney, A.B., Laslett, G.M. (1999) Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 91(1–2), pp. 27-45. doi:10.1016/S0016-7061(99)00003-8
O'Brien, Lauren (2022). mpspline2: Mass-Preserving Spline Functions for Soil Data. R package version 0.1.6. https://cran.r-project.org/package=mpspline2
if (requireNamespace("mpspline2")) { data(sp1) depths(sp1) <- id ~ top + bottom res <- spc2mpspline(sp1, "prop") plotSPC(res[1:5,], color = "prop_spline", divide.hz = FALSE) }
if (requireNamespace("mpspline2")) { data(sp1) depths(sp1) <- id ~ top + bottom res <- spc2mpspline(sp1, "prop") plotSPC(res[1:5,], color = "prop_spline", divide.hz = FALSE) }
Convert reflectance spectra to closest Munsell chip
spec2Munsell( x, res = 10, convert = TRUE, SO = c("CIE1931", "CIE1964"), illuminant = c("D65", "F2"), ... )
spec2Munsell( x, res = 10, convert = TRUE, SO = c("CIE1931", "CIE1964"), illuminant = c("D65", "F2"), ... )
x |
reflectance spectra, must range from 380nm to 730nm with resolution specified in |
res |
spectra resolution in nm, typically 5nm or 10nm |
convert |
logical, convert sRGB coordinates to closest Munsell chip (see |
SO |
CIE standard observer: these are the color matching functions defined by CIE and used to represent "average" human color perception. CIE1931 is the 2 degree standard observer more useful for describing color perception over very small areas or at distance. CIE1964 is the 10 degree standard observer, used for most industrial color matching applications. |
illuminant |
CIE standard illuminants:
|
... |
further arguments to |
See the expanded tutorial for additional examples.
output from col2Munsell()
Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and Technology (pp. 32-96). North-Holland.
CIE Colorimetry – Part 1: CIE standard colorimetric observers. CIES014-1/E:2006 – ISO 11664-1:2007(E)
CIE. (n.d.). CIE 15:2004 Tables Data. Retrieved from https://law.resource.org/pub/us/cfr/ibr/003/cie.15.2004.tables.xls
# Munsell reference spectra data("munsell.spectra.wide") # convert to closest Munsell chip # sRGB -> Munsell conversion via col2Munsell() spec2Munsell(munsell.spectra.wide[, '10YR 3/3']) # attempt several cols <- c('10YR 6/2', '5YR 5/6', '10B 4/4', '5G 4/4', '2.5Y 8/2', '10YR 3/3', '7.5YR 2.5/2') # most are exact or very close z <- do.call( 'rbind', lapply(cols, function(i) { spec2Munsell(munsell.spectra.wide[, i]) }) ) # format Munsell notation from pieces z$m <- sprintf("%s %s/%s", z$hue, z$value, z$chroma) # compare colorContrastPlot( m1 = cols, m2 = z$m, labels = c('original', 'spectral\ninterpretation') ) ## Not run: if(requireNamespace("gower")) { # mix colors, return spectra, convert to color cols <- c('10YR 6/2', '5YR 5/6', '10B 4/4') res <- mixMunsell(cols, keepMixedSpec = TRUE, mixingMethod = 'reference') # note that they are slightly different res$mixed spec2Munsell(res$spec) } ## End(Not run)
# Munsell reference spectra data("munsell.spectra.wide") # convert to closest Munsell chip # sRGB -> Munsell conversion via col2Munsell() spec2Munsell(munsell.spectra.wide[, '10YR 3/3']) # attempt several cols <- c('10YR 6/2', '5YR 5/6', '10B 4/4', '5G 4/4', '2.5Y 8/2', '10YR 3/3', '7.5YR 2.5/2') # most are exact or very close z <- do.call( 'rbind', lapply(cols, function(i) { spec2Munsell(munsell.spectra.wide[, i]) }) ) # format Munsell notation from pieces z$m <- sprintf("%s %s/%s", z$hue, z$value, z$chroma) # compare colorContrastPlot( m1 = cols, m2 = z$m, labels = c('original', 'spectral\ninterpretation') ) ## Not run: if(requireNamespace("gower")) { # mix colors, return spectra, convert to color cols <- c('10YR 6/2', '5YR 5/6', '10B 4/4') res <- mixMunsell(cols, keepMixedSpec = TRUE, mixingMethod = 'reference') # note that they are slightly different res$mixed spec2Munsell(res$spec) } ## End(Not run)
D65 and F2 standard illuminant spectral power distributions, CIE1931 Standard Observer (2 degree), and CIE1964 Supplemental Standard Observer (10 degree)
data(spectral.reference)
data(spectral.reference)
An object of class data.frame
with 71 rows and 9 columns.
Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and Technology (pp. 32-96). North-Holland.
CIE Colorimetry – Part 1: CIE standard colorimetric observers. CIES014-1/E:2006 – ISO 11664-1:2007(E)
CIE. (n.d.). CIE 15:2004 Tables Data. Retrieved from https://law.resource.org/pub/us/cfr/ibr/003/cie.15.2004.tables.xls
data("spectral.reference") matplot( x = spectral.reference[, 1], y = spectral.reference[, c('xbar_2', 'ybar_2', 'zbar_2')], ylim = c(0, 2), type = 'l', lwd = 2, lty = 1, las = 1, xlab = 'Wavelength (nm)', ylab = 'Weight | Intensity', main = "CIE1931 (2\u00B0) and CIE1964 (10\u00B0) Standard Observers D65 and F2 Illuminant Power Spectrum (rescaled / offset for clarity)", cex.main = 0.9 ) matlines( x = spectral.reference[, 1], y = spectral.reference[, c('xbar_10', 'ybar_10', 'zbar_10')], type = 'l', lwd = 2, lty = 2, las = 1, xlab = 'Wavelength (nm)', ylab = 'Weight | Intensity', main = 'CIE1931 Standard Observer Weights\nD65 Standard Illuminant' ) lines( x = spectral.reference$w, y = (spectral.reference$D65 / 100) + 0.33, lty = 1, col = 'royalblue' ) lines( x = spectral.reference$w, y = (spectral.reference$F2 / 25) + 0.4, lty = 1, col = 'violet' ) legend( 'topright', legend = c('X_2', 'Y_2', 'Z_2', 'X_10', 'Y_10', 'Z_10', 'D65', 'F2'), col = c(1, 2, 3, 1, 2, 3, 'royalblue', 'violet'), lwd = c(2, 2, 2, 2, 2, 2, 1, 1), lty = c(1, 1, 1, 2, 2, 2, 1, 1), bty = 'n', cex = 0.85 )
data("spectral.reference") matplot( x = spectral.reference[, 1], y = spectral.reference[, c('xbar_2', 'ybar_2', 'zbar_2')], ylim = c(0, 2), type = 'l', lwd = 2, lty = 1, las = 1, xlab = 'Wavelength (nm)', ylab = 'Weight | Intensity', main = "CIE1931 (2\u00B0) and CIE1964 (10\u00B0) Standard Observers D65 and F2 Illuminant Power Spectrum (rescaled / offset for clarity)", cex.main = 0.9 ) matlines( x = spectral.reference[, 1], y = spectral.reference[, c('xbar_10', 'ybar_10', 'zbar_10')], type = 'l', lwd = 2, lty = 2, las = 1, xlab = 'Wavelength (nm)', ylab = 'Weight | Intensity', main = 'CIE1931 Standard Observer Weights\nD65 Standard Illuminant' ) lines( x = spectral.reference$w, y = (spectral.reference$D65 / 100) + 0.33, lty = 1, col = 'royalblue' ) lines( x = spectral.reference$w, y = (spectral.reference$F2 / 25) + 0.4, lty = 1, col = 'violet' ) legend( 'topright', legend = c('X_2', 'Y_2', 'Z_2', 'X_10', 'Y_10', 'Z_10', 'D65', 'F2'), col = c(1, 2, 3, 1, 2, 3, 'royalblue', 'violet'), lwd = c(2, 2, 2, 2, 2, 2, 1, 1), lty = c(1, 1, 1, 2, 2, 2, 1, 1), bty = 'n', cex = 0.85 )
This function splits a SoilProfileCollection
into a list of SoilProfileCollection
objects using a site-level attribute to define groups or profile ID (idname(x)
).
## S4 method for signature 'SoilProfileCollection' split(x, f, drop = TRUE, ...)
## S4 method for signature 'SoilProfileCollection' split(x, f, drop = TRUE, ...)
x |
|
f |
character vector naming a single site-level attribute that defines groups, a ‘factor’ in the sense that |
drop |
logical indicating if levels that do not occur should be dropped (if f is a factor or a list). When |
... |
additional arguments are ignored |
As of aqp 1.25, omission of f
argument is no longer possible, as the base R generic is overloaded by this SoilProfileCollection
method. This used to result in an "identity" split, according to idname(x)
, e.g. a list as long as length(x)
, with a single-profile SoilProfileCollection
per list element. Replicate this behavior using f = idname(x)
or f = profile_id(x)
.
A list of SoilProfileCollection
or NULL
for empty result.
D.E. Beaudette and A.G. Brown
data(sp2) depths(sp2) <- id ~ top + bottom # add a more interesting site-level attribute site(sp2) <- ~ surface # using identity site-level attribute (profile ID) p1 <- split(sp2, f = idname(sp2)) names(p1) length(p1) # using vector equal in length to number of profiles (profile ID, again) p2 <- split(sp2, f = profile_id(sp2)) names(p2) length(p2) # which are both equivalent to setting `f` to NULL p3 <- split(sp2, f = NULL) names(p3) length(p3) # split on surface (age) site-level var p4 <- split(sp2, f = "surface") names(p4) length(p4) # 5 unique "surfaces", 5 SPCs in result list
data(sp2) depths(sp2) <- id ~ top + bottom # add a more interesting site-level attribute site(sp2) <- ~ surface # using identity site-level attribute (profile ID) p1 <- split(sp2, f = idname(sp2)) names(p1) length(p1) # using vector equal in length to number of profiles (profile ID, again) p2 <- split(sp2, f = profile_id(sp2)) names(p2) length(p2) # which are both equivalent to setting `f` to NULL p3 <- split(sp2, f = NULL) names(p3) length(p3) # split on surface (age) site-level var p4 <- split(sp2, f = "surface") names(p4) length(p4) # 5 unique "surfaces", 5 SPCs in result list
SoilProfileCollection
into a list based on types of horizon logic errorsUses checkHzDepthLogic()
to identify presence of depth logic errors, same depths, missing depths, and overlaps/gaps between the horizons of each profile in a SoilProfileCollection.
splitLogicErrors(object, interact = FALSE, ...)
splitLogicErrors(object, interact = FALSE, ...)
object |
A |
interact |
Calculate interaction between the four logic errors for groups? Default: |
... |
Additional arguments to |
A named list of SoilProfileCollections
(or NULL
), with names: "depthLogic", "sameDepth", "missingDepth", "overlapOrGap". If interact = TRUE
then the list elements groups determined by interaction()
of the error types.
data(sp4) depths(sp4) <- id ~ top + bottom # no errors (all four list elements return NULL) splitLogicErrors(sp4) # NA in top depth triggers depth logic and missing depth errors data(sp4) sp4$top[1] <- NA depths(sp4) <- id ~ top + bottom splitLogicErrors(sp4) # interact = TRUE gets errors for profile 1 in same group # and allows you to pass extra arguments to split.default() splitLogicErrors(sp4, interact = TRUE, sep = "_", drop = TRUE)
data(sp4) depths(sp4) <- id ~ top + bottom # no errors (all four list elements return NULL) splitLogicErrors(sp4) # NA in top depth triggers depth logic and missing depth errors data(sp4) sp4$top[1] <- NA depths(sp4) <- id ~ top + bottom splitLogicErrors(sp4) # interact = TRUE gets errors for profile 1 in same group # and allows you to pass extra arguments to split.default() splitLogicErrors(sp4, interact = TRUE, sep = "_", drop = TRUE)
subApply()
is a function used for subsetting SoilProfileCollections. It currently does NOT support for "tidy" lexical features in the ...
arguments passed to profileApply()
. The expectation is that the function .fun
takes a single-profile SoilProfileCollection and returns a logical value of length one. The use case would be for any logical comparisons that cannot be evaluated inline by subSPC()
because they require more than simple logical operations.
subApply(object, .fun, ...)
subApply(object, .fun, ...)
object |
A SoilProfileCollection |
.fun |
A function that takes a single profile, returns logical of length 1. |
... |
Additional arguments are passed to |
A SoilProfileCollection.
Andrew G. Brown.
subset()
is a function used for extracting profiles from a SoilProfileCollection based on logical criteria. It allows the user to specify an arbitrary number of logical vectors (equal in length to site or horizon), separated by commas. The function includes some support for non-standard evaluation.
## S4 method for signature 'SoilProfileCollection' subset(x, ..., greedy = FALSE)
## S4 method for signature 'SoilProfileCollection' subset(x, ..., greedy = FALSE)
x |
A SoilProfileCollection |
... |
Comma-separated set of R expressions that evaluate as TRUE or FALSE. Length for individual expressions matches number of sites OR number of horizons, in |
greedy |
Use "greedy" matching for combination of site and horizon level matches? |
To minimize likelihood of issues with non-standard evaluation context, especially when using subset()
inside another function, all expressions used in ...
should be in terms of variables that are in the site or horizon data frame.
A SoilProfileCollection.
Andrew G. Brown.
subsetHz()
is a function used for extracting horizons from a SoilProfileCollection based on logical criteria.
## S4 method for signature 'SoilProfileCollection' subsetHz(x, ..., drop = TRUE)
## S4 method for signature 'SoilProfileCollection' subsetHz(x, ..., drop = TRUE)
x |
a SoilProfileCollection |
... |
Comma-separated set of R expressions that evaluate as |
drop |
Default: |
To minimize likelihood of issues with non-standard evaluation context, especially when using subsetHz()
inside another function, all expressions used in ...
should be in terms of variables that are in the horizon data frame.
a SoilProfileCollection with a subset of horizons, possibly with some sites removed
data(sp3) depths(sp3) <- id ~ top + bottom # show just horizons with 10YR hues plot(subsetHz(sp3, hue == '10YR'))
data(sp3) depths(sp3) <- id ~ top + bottom # show just horizons with 10YR hues plot(subsetHz(sp3, hue == '10YR'))
This function is used to subset SoilProfileCollection
objects using
either site-level or horizon-level attributes, or both.
## S4 method for signature 'SoilProfileCollection' subsetProfiles(object, s, h, ...)
## S4 method for signature 'SoilProfileCollection' subsetProfiles(object, s, h, ...)
object |
object |
s |
fully-quoted search criteria for matching via site-level attributes |
h |
fully-quoted search criteria for matching via horizon-level attributes |
... |
not used |
The s
argument supplies a fully-quoted search criteria for matching
via site or horizon-level attributes. The h
argument supplies a fully-quoted
search criteria for matching via horizon-level attributes. All horizons
associated with a single horizon-level match (i.e. out of several, only a
single horizon matches the search criteria) are returned. See examples for
usage.
A SoilProfileCollection
class object.
# more interesting sample data data(sp2) depths(sp2) <- id ~ top + bottom site(sp2) <- ~ surface # subset by integer index, note that this does not re-order the profiles plot(sp2[1:5, ]) # generate an integer index via pattern-matching idx <- grep('modesto', sp2$surface, ignore.case=TRUE) plot(sp2[idx, ]) # generate in index via profileApply: # subset those profiles where: min(ph) < 5.6 idx <- which(profileApply(sp2, function(i) min(i$field_ph, na.rm=TRUE) < 5.6)) plot(sp2[idx, ])
# more interesting sample data data(sp2) depths(sp2) <- id ~ top + bottom site(sp2) <- ~ surface # subset by integer index, note that this does not re-order the profiles plot(sp2[1:5, ]) # generate an integer index via pattern-matching idx <- grep('modesto', sp2$surface, ignore.case=TRUE) plot(sp2[idx, ]) # generate in index via profileApply: # subset those profiles where: min(ph) < 5.6 idx <- which(profileApply(sp2, function(i) min(i$field_ph, na.rm=TRUE) < 5.6)) plot(sp2[idx, ])
group_by
) and create new site or horizon level attributessummarize()
is a function used for summarizing a SoilProfileCollection
object. Specify the groups using the group_by verb, and then (named) expressions to evaluate on each group. The result is a data.frame with one row per categorical level in the grouping variable and one column for each summary variable.
summarizeSPC(object, ...)
summarizeSPC(object, ...)
object |
A |
... |
A set of (named) comma-delimited R expressions that resolve to a summary value. e.g |
A data.frame
with one row per level in the grouping variable, and one column for each summary
Andrew G. Brown
tauW
: Computes: (1) unweighted naive, (2) weighted naive, (3) unweighted tau, (4) weighted tau accuracy statistics
tauW( CM, W = diag(sqrt(length(as.matrix(CM)))), P = rep(1/nrow(as.matrix(CM)), nrow(as.matrix(CM))) ) summaryTauW(result.tau)
tauW( CM, W = diag(sqrt(length(as.matrix(CM)))), P = rep(1/nrow(as.matrix(CM)), nrow(as.matrix(CM))) ) summaryTauW(result.tau)
CM |
a square confusion (cross-classification) matrix (rows: allocation, columns: reference) |
W |
weights: 1 on diagonals, [-1..1] off giving partial credit to this error |
P |
prior probability vector, length = number of rows/columns in |
result.tau |
|
summaryTauW
: prints a summary of the results from tauW
xtableTauW
: formats a LaTeX table with results from tauW and saves it as a .tex
file for import into a LaTeX document.
Input matrices CM
and W
may be in data.frame
format and will be converted
Weights matrix W
: 0 = no credit; 1 = full credit; -1 = maximum penalty
If absent, default is no partial credit, i.e., unweighted.
Prior probabilities vector P
: If absent, P
are equal priors for each class. Special value P = 0
is interpreted as P
= column marginals.
Error checks: CM
must be square; P
must have correct number of classes and sum to 1 +/- 0.0001; W
& CM
must be conformable
Results are returned in a list with obvious R names
D.G. Rossiter
Rossiter, D. G., Zeng, R., & Zhang, G.-L. (2017). Accounting for taxonomic distance in accuracy assessment of soil class predictions. Geoderma, 292, 118–127. doi:10.1016/j.geoderma.2017.01.012
Ma, Z. K., & Redmond, R. L. (1995). Tau-coefficients for accuracy assessment of classification of remote-sensing data. Photogrammetric Engineering and Remote Sensing, 61(4), 435–439.
Naesset, E. (1996). Conditional tau coefficient for assessment of producer’s accuracy of classified remotely sensed data. ISPRS Journal of Photogrammetry and Remote Sensing, 51(2), 91–98. doi:10.1016/0924-2716(69)00007-4
# example confusion matrix # rows: allocation (user's counts) # columns: reference (producer's counts) crossclass <- matrix(data=c(2,1,0,5,0,0, 1,74,2,1,3,6, 0,5,8,6,1,3, 6,1,3,91,0,0, 0,4,0,0,0,4, 0,6,2,2,4,38), nrow=6, byrow=TRUE) row.names(crossclass) <- c("OP", "SA", "UA", "UC", "AV", "AC") colnames(crossclass) <- row.names(crossclass) # build the weights matrix # how much credit for a mis-allocation weights <- matrix(data=c(1.00,0.05,0.05,0.15,0.05,0.15, 0.05,1.00,0.05,0.05,0.05,0.35, 0.05,0.05,1.00,0.20,0.15,0.15, 0.15,0.05,0.25,1.00,0.10,0.25, 0.05,0.10,0.15,0.10,1.00,0.15, 0.20,0.30,0.10,0.25,0.20,1.00), nrow=6, byrow=TRUE) # unweighted accuracy summaryTauW(nnaive <- tauW(crossclass)) # unweighted tau with equal priors, equivalent to Foody (1992) modified Kappa tauW(crossclass)$tau # unweighted tau with user's = producer's marginals, equivalent to original kappa (priors <- apply(crossclass, 2, sum)/sum(crossclass)) tauW(crossclass, P=priors)$tau # weighted accuracy; tau with equal priors summaryTauW(weighted <- tauW(crossclass, W=weights)) # weighted accuracy; tau with user's = producer's marginals summaryTauW(tauW(crossclass, W=weights, P=priors)) # change in accuracy statistics weighted vs. non-weighted (weighted$overall.weighted - weighted$overall.naive) (weighted$user.weighted - weighted$user.naive) (weighted$prod.weighted - weighted$prod.naive)
# example confusion matrix # rows: allocation (user's counts) # columns: reference (producer's counts) crossclass <- matrix(data=c(2,1,0,5,0,0, 1,74,2,1,3,6, 0,5,8,6,1,3, 6,1,3,91,0,0, 0,4,0,0,0,4, 0,6,2,2,4,38), nrow=6, byrow=TRUE) row.names(crossclass) <- c("OP", "SA", "UA", "UC", "AV", "AC") colnames(crossclass) <- row.names(crossclass) # build the weights matrix # how much credit for a mis-allocation weights <- matrix(data=c(1.00,0.05,0.05,0.15,0.05,0.15, 0.05,1.00,0.05,0.05,0.05,0.35, 0.05,0.05,1.00,0.20,0.15,0.15, 0.15,0.05,0.25,1.00,0.10,0.25, 0.05,0.10,0.15,0.10,1.00,0.15, 0.20,0.30,0.10,0.25,0.20,1.00), nrow=6, byrow=TRUE) # unweighted accuracy summaryTauW(nnaive <- tauW(crossclass)) # unweighted tau with equal priors, equivalent to Foody (1992) modified Kappa tauW(crossclass)$tau # unweighted tau with user's = producer's marginals, equivalent to original kappa (priors <- apply(crossclass, 2, sum)/sum(crossclass)) tauW(crossclass, P=priors)$tau # weighted accuracy; tau with equal priors summaryTauW(weighted <- tauW(crossclass, W=weights)) # weighted accuracy; tau with user's = producer's marginals summaryTauW(tauW(crossclass, W=weights, P=priors)) # change in accuracy statistics weighted vs. non-weighted (weighted$overall.weighted - weighted$overall.naive) (weighted$user.weighted - weighted$user.naive) (weighted$prod.weighted - weighted$prod.naive)
These functions consist of several conversions between sand, silt and clay to texture class and visa versa, textural modifiers to rock fragments, and grain size composition to the family particle size class.
texcl_to_ssc(texcl = NULL, clay = NULL, sample = FALSE) ssc_to_texcl( sand = NULL, clay = NULL, simplify = FALSE, as.is = FALSE, droplevels = TRUE ) texmod_to_fragvoltot(texmod = NULL, lieutex = NULL) texture_to_taxpartsize( texcl = NULL, clay = NULL, sand = NULL, sandvf = NULL, fragvoltot = NULL ) texture_to_texmod(texture, duplicates = "combine") fragvol_to_texmod( object = NULL, gravel = NULL, cobbles = NULL, stones = NULL, boulders = NULL, channers = NULL, flagstones = NULL, paragravel = NULL, paracobbles = NULL, parastones = NULL, paraboulders = NULL, parachanners = NULL, paraflagstones = NULL, as.is = TRUE, droplevels = TRUE )
texcl_to_ssc(texcl = NULL, clay = NULL, sample = FALSE) ssc_to_texcl( sand = NULL, clay = NULL, simplify = FALSE, as.is = FALSE, droplevels = TRUE ) texmod_to_fragvoltot(texmod = NULL, lieutex = NULL) texture_to_taxpartsize( texcl = NULL, clay = NULL, sand = NULL, sandvf = NULL, fragvoltot = NULL ) texture_to_texmod(texture, duplicates = "combine") fragvol_to_texmod( object = NULL, gravel = NULL, cobbles = NULL, stones = NULL, boulders = NULL, channers = NULL, flagstones = NULL, paragravel = NULL, paracobbles = NULL, parastones = NULL, paraboulders = NULL, parachanners = NULL, paraflagstones = NULL, as.is = TRUE, droplevels = TRUE )
texcl |
vector of texture classes than conform to the USDA code conventions (e.g. c|C, sil|SIL, sl|SL, cos|COS) |
clay |
vector of clay percentages |
sample |
logical: should ssc be random sampled from the lookup table? (default: FALSE) |
sand |
vector of sand percentages |
simplify |
Passed to |
as.is |
logical: should character vectors be converted to factors? (default: TRUE) |
droplevels |
logical: indicating whether to drop unused levels in factors. This is useful when the results have a large number of unused classes, which can waste space in tables and figures. |
texmod |
vector of textural modifiers that conform to the USDA code conventions (e.g. gr|GR, grv|GRV) |
lieutex |
vector of in lieu of texture terms that conform to the USDA code conventions (e.g. gr|GR, pg|PG), only used when fragments or artifacts are > 90 percent by volume (default: NULL)) |
sandvf |
vector of very fine sand percentages |
fragvoltot |
vector of total rock fragment percentages |
texture |
vector of combinations of texcl, texmod, and lieutex (e.g. CL, GR-CL, CBV-S, GR) |
duplicates |
character: specifying how multiple values should be handled, options are |
object |
data.frame: containing the following column names: gravel, cobbles, stones, boulders, channers, flagstones, paragravel, paracobbles, parastones, paraboulders, parachanners, paraflagstones |
gravel |
numeric: gravel volume % |
cobbles |
numeric: cobble volume % |
stones |
numeric: stone volume % |
boulders |
numeric: boulder volume % |
channers |
numeric: channer volume % |
flagstones |
numeric: flagstone volume % |
paragravel |
numeric: para gravel volume % |
paracobbles |
numeric: para cobble volume % |
parastones |
numeric: para stone volume % |
paraboulders |
numeric: para boulder volume % |
parachanners |
numeric: para channer volume % |
paraflagstones |
numeric: para flagstone volume % |
These functions are intended to estimate missing values or allocate particle
size fractions to classes. The ssc_to_texcl()
function uses the same
logic as the particle size estimator calculation in NASIS to classify sand
and clay into texture class. The results are stored in soiltexture
and used by texcl_to_ssc()
as a lookup table to convert texture class
to sand, silt and clay. The function texcl_to_ssc()
replicates the
functionality described by Levi (2017). The texmod_to_fragvol()
function similarly uses the logical from the
Exhibit618-11_texture_modifier.xls spreadsheet to determine the textural
modifier from the various combinations of rock and pararock fragments
(e.g. GR and PGR).
When sample = TRUE
, the results can be used to estimate within-class,
marginal distributions of sand, silt, and clay fractions. It is recommended
that at least 10 samples be drawn for reasonable estimates.
The function texmod_to_fragvoltot
returns a data.frame with multiple
fragvoltot columns differentiated by tailing abbreviations (e.g. _r) which
refer to the following:
l = low
r = representative
h = high
nopf = no pararock fragments (i.e. total fragments - pararock fragments)
The function texture_to_texmod()
parses texture (e.g. GR-CL) to extract the texmod values from it in the scenario where it is missing from
texmod column. If multiple texmod values are present (for example in the
case of stratified textures) and duplicates = "combine"
they will be combined in the output (e.g. GR & CBV). Otherwise if duplicates = "max"
the texmod with the highest rock fragment (e.g. CBV) will be returned.
Unlike the other functions, texture_to_taxpartsize()
is intended to
be computed on weighted averages within the family particle size control
section. Also recall from the criteria that carbonate clay should be
subtracted from clay content and added to silt content. Similarly, if the
percent of very fine sand is known it should be subtracted from the sand,
and added to the silt content. Unlike the other functions,
texture_to_taxpartsize()
is intended to be computed on weighted
averages within the family particle size control section. Also recall from
the criteria that carbonate clay should be subtracted from clay content and
added to silt content. Similarly, if the percent of very fine sand is known
it should be subtracted from the sand, and added to the silt content.
texcl_to_ssc
: A data.frame
containing columns "sand"
,"silt"
, "clay"
ssc_to_texcl
: A character
vector containing texture class
texmod_to_fragvoltot
: A data.frame
containing columns "fragvoltot_l"
,
"fragvoltot_r"
, "fragvoltot_h"
, "fragvoltot_l_nopf"
, "fragvoltot_r_nopf"
, "fragvoltot_h_nopf"
texture_to_taxpartsize
: a character vector containing "taxpartsize"
classes
texture_to_texmod
: a character vector containing "texmod"
classes
texmod_to_fragvol
: a data.frame containing "texmod"
and "lieutex"
classes
Stephen Roecker
Matthew R. Levi, Modified Centroid for Estimating Sand, Silt, and Clay from Soil Texture Class, Soil Science Society of America Journal, 2017, 81(3):578-588, ISSN 1435-0661, doi:10.2136/sssaj2016.09.0301.
hz_to_taxpartsize()
, lookup_taxpartsize()
# example of ssc_to_texcl() tex <- expand.grid(sand = 0:100, clay = 0:100) tex <- subset(tex, (sand + clay) < 101) tex$texcl <- ssc_to_texcl(sand = tex$sand, clay = tex$clay) head(tex) # example of texcl_to_ssc(texcl) texcl <- c("cos", "s", "fs", "vfs", "lcos", "ls", "lfs", "lvfs", "cosl", "sl", "fsl", "vfsl", "l", "sil", "si", "scl", "cl", "sicl", "sc", "sic", "c" ) test <- texcl_to_ssc(texcl) head(test <- cbind(texcl, test), 10) # example of texcl_to_ssc(texcl, clay) data(soiltexture) st <- soiltexture$values idx <- sample(1:length(st$texcl), 10) st <- st[idx, ] ssc <- texcl_to_ssc(texcl = st$texcl) head(cbind(texcl = st$texcl, clay = ssc$clay)) # example of texmod_to_fragvoltol frags <- c("gr", "grv", "grx", "pgr", "pgrv", "pgrx") head(texmod_to_fragvoltot(frags)) # example of texture_to_taxpartsize() tex <- data.frame(texcl = c("c", "cl", "l", "ls", "s"), clay = c(55, 33, 18, 6, 3), sand = c(20, 33, 42, 82, 93), fragvoltot = c(35, 15, 34, 60, 91)) tex$fpsc <- texture_to_taxpartsize(texcl = tex$texcl, clay = tex$clay, sand = tex$sand, fragvoltot = tex$fragvoltot) head(tex) # example of texture_to_taxpartsize() with carbonate clay and very fine sand carbclay <- rnorm(5, 2, 3) vfs <- rnorm(5, 10, 3) st$fpsc <- texture_to_taxpartsize(texcl = tex$texcl, clay = tex$clay - carbclay, sand = tex$sand - vfs, fragvoltot = tex$fragvoltot) head(tex) # example of sample = TRUE texcl <- rep(c("cl", "sil", "sl"), 10) ssc1 <- cbind(texcl, texcl_to_ssc(texcl = texcl, sample = FALSE)) ssc2 <- cbind(texcl, texcl_to_ssc(texcl = texcl, sample = TRUE)) ssc1$sample <- FALSE ssc2$sample <- TRUE ssc <- rbind(ssc1, ssc2) aggregate(clay ~ sample + texcl, data = ssc, summary) # example of texture_to_texmod() tex <- c("SL", "GR-SL", "CBV-L", "SR- GR-FS GRX-COS") texture_to_texmod(tex) texture_to_texmod(tex, duplicates = "max") # example of fragvol_to_texmod() df <- expand.grid( gravel = seq(0, 100, 5), cobbles = seq(0, 100, 5), stones = seq(0, 100, 5), boulders = seq(0, 100, 5) ) df <- df[rowSums(df) < 100, ] # data.frame input test <- fragvol_to_texmod(df) table(test$texmod) table(test$lieutex) # vector inputs fragvol_to_texmod(gravel = 10, cobbles = 10)
# example of ssc_to_texcl() tex <- expand.grid(sand = 0:100, clay = 0:100) tex <- subset(tex, (sand + clay) < 101) tex$texcl <- ssc_to_texcl(sand = tex$sand, clay = tex$clay) head(tex) # example of texcl_to_ssc(texcl) texcl <- c("cos", "s", "fs", "vfs", "lcos", "ls", "lfs", "lvfs", "cosl", "sl", "fsl", "vfsl", "l", "sil", "si", "scl", "cl", "sicl", "sc", "sic", "c" ) test <- texcl_to_ssc(texcl) head(test <- cbind(texcl, test), 10) # example of texcl_to_ssc(texcl, clay) data(soiltexture) st <- soiltexture$values idx <- sample(1:length(st$texcl), 10) st <- st[idx, ] ssc <- texcl_to_ssc(texcl = st$texcl) head(cbind(texcl = st$texcl, clay = ssc$clay)) # example of texmod_to_fragvoltol frags <- c("gr", "grv", "grx", "pgr", "pgrv", "pgrx") head(texmod_to_fragvoltot(frags)) # example of texture_to_taxpartsize() tex <- data.frame(texcl = c("c", "cl", "l", "ls", "s"), clay = c(55, 33, 18, 6, 3), sand = c(20, 33, 42, 82, 93), fragvoltot = c(35, 15, 34, 60, 91)) tex$fpsc <- texture_to_taxpartsize(texcl = tex$texcl, clay = tex$clay, sand = tex$sand, fragvoltot = tex$fragvoltot) head(tex) # example of texture_to_taxpartsize() with carbonate clay and very fine sand carbclay <- rnorm(5, 2, 3) vfs <- rnorm(5, 10, 3) st$fpsc <- texture_to_taxpartsize(texcl = tex$texcl, clay = tex$clay - carbclay, sand = tex$sand - vfs, fragvoltot = tex$fragvoltot) head(tex) # example of sample = TRUE texcl <- rep(c("cl", "sil", "sl"), 10) ssc1 <- cbind(texcl, texcl_to_ssc(texcl = texcl, sample = FALSE)) ssc2 <- cbind(texcl, texcl_to_ssc(texcl = texcl, sample = TRUE)) ssc1$sample <- FALSE ssc2$sample <- TRUE ssc <- rbind(ssc1, ssc2) aggregate(clay ~ sample + texcl, data = ssc, summary) # example of texture_to_texmod() tex <- c("SL", "GR-SL", "CBV-L", "SR- GR-FS GRX-COS") texture_to_texmod(tex) texture_to_texmod(tex, duplicates = "max") # example of fragvol_to_texmod() df <- expand.grid( gravel = seq(0, 100, 5), cobbles = seq(0, 100, 5), stones = seq(0, 100, 5), boulders = seq(0, 100, 5) ) df <- df[rowSums(df) < 100, ] # data.frame input test <- fragvol_to_texmod(df) table(test$texmod) table(test$lieutex) # vector inputs fragvol_to_texmod(gravel = 10, cobbles = 10)
This function accepts soil texture components (sand, silt, and clay percentages) and plots a soil texture triangle with a "representative value" (point) and low-high region (polygon) defined by quantiles (estimated with Hmisc::hdquantile
). Marginal quantiles of sand, silt, and clay are used to define the boundary of a low-high region. The default settings place the RV symbol at the texture defined by marginal medians of sand, silt, and clay. The default low-high region is defined by the 5th and 95th marginal percentiles of sand, silt, and clay.
textureTriangleSummary( ssc, p = c(0.05, 0.5, 0.95), delta = 1, rv.col = "red", range.border = "black", range.col = "RoyalBlue", range.alpha = 80, range.lty = 1, range.lwd = 2, main = "Soil Textures", legend.cex = 0.75, legend = TRUE, ... )
textureTriangleSummary( ssc, p = c(0.05, 0.5, 0.95), delta = 1, rv.col = "red", range.border = "black", range.col = "RoyalBlue", range.alpha = 80, range.lty = 1, range.lwd = 2, main = "Soil Textures", legend.cex = 0.75, legend = TRUE, ... )
ssc |
|
p |
vector of percentiles (length = 3) defining 'low', 'representative value', and 'high' |
delta |
grid size used to form low-high region |
rv.col |
color used for representative value (RV) symbol |
range.border |
color used for polygon border enclosing the low-high region |
range.col |
color used for polygon enclosing the low-high region |
range.alpha |
transparency of the low-high range polygon (0-255) |
range.lty |
line style for polygon enclosing the low-high region |
range.lwd |
line weight polygon enclosing the low-high region |
main |
plot title |
legend.cex |
scaling factor for legend |
legend |
logical, enable/disable automatic legend |
... |
further arguments passed to |
an invisible matrix
with marginal percentiles of sand, silt, and clay
D.E. Beaudette, J. Nemecek, K. Godsey
if( requireNamespace("Hmisc") & requireNamespace("compositions") & requireNamespace("soiltexture") ) { # sample data data('sp4') # subset rows / columns ssc <- sp4[grep('^Bt', sp4$name), c('sand', 'silt', 'clay')] names(ssc) <- toupper(names(ssc)) # make figure, marginal percentiles are silently returned stats <- textureTriangleSummary( ssc, pch = 1, cex = 0.5, range.alpha = 50, range.lwd = 1, col = grey(0.5), legend = FALSE ) # check stats # simulate some data and try again s <- bootstrapSoilTexture(ssc, n = 100)$samples # make the figure, ignore results textureTriangleSummary( s, pch = 1, cex = 0.5, range.alpha = 50, range.lwd = 1, col = grey(0.5), legend = FALSE ) }
if( requireNamespace("Hmisc") & requireNamespace("compositions") & requireNamespace("soiltexture") ) { # sample data data('sp4') # subset rows / columns ssc <- sp4[grep('^Bt', sp4$name), c('sand', 'silt', 'clay')] names(ssc) <- toupper(names(ssc)) # make figure, marginal percentiles are silently returned stats <- textureTriangleSummary( ssc, pch = 1, cex = 0.5, range.alpha = 50, range.lwd = 1, col = grey(0.5), legend = FALSE ) # check stats # simulate some data and try again s <- bootstrapSoilTexture(ssc, n = 100)$samples # make the figure, ignore results textureTriangleSummary( s, pch = 1, cex = 0.5, range.alpha = 50, range.lwd = 1, col = grey(0.5), legend = FALSE ) }
This function calculates the cumulative (method="cumulative"
, default) or maximum difference between (method="minmax"
) horizons within a profile that match a defined pattern (pattern
) or, more generally, any set of horizon-level logical expressions encoded in a function (FUN
).
thicknessOf( x, pattern = NULL, hzdesgn = hzdesgnname(x, required = TRUE), method = "cumulative", prefix = "", thickvar = "thickness", depthvars = horizonDepths(x), FUN = function(x, pattern, hzdesgn, ...) grepl(pattern, x[[hzdesgn]]), na.rm = FALSE, ... )
thicknessOf( x, pattern = NULL, hzdesgn = hzdesgnname(x, required = TRUE), method = "cumulative", prefix = "", thickvar = "thickness", depthvars = horizonDepths(x), FUN = function(x, pattern, hzdesgn, ...) grepl(pattern, x[[hzdesgn]]), na.rm = FALSE, ... )
x |
A SoilProfileCollection |
pattern |
character. A pattern to match in |
hzdesgn |
character. A column containing horizon designations or other horizon-level character label used to identify matches; used with the default |
method |
character. Either |
prefix |
character. Column prefix for calculated |
thickvar |
character Length |
depthvars |
character. Length |
FUN |
function. A function that returns a logical vector equal in length to the number of horizons in |
na.rm |
logical. Omit |
... |
Additional arguments passed to the matching function |
The two thickness methods currently available are:
method="cumulative"
(default): cumulative thickness of horizons where FUN
returns true
method="minmax"
: maximum bottom depth minus minimum top depth of horizons where FUN
returns true
If a custom function (FUN
) is used, it should accept arbitrary additional arguments via an ellipsis (...
).
It is not necessary to do anything with arguments, but the result should match the number of horizons found in the input SoilProfileCollection x
.
A data.frame-like object (corresponding to the aqp_df_class()
of x
) with one row per profile in x
. First column is always the profile ID which is followed by "thickness"
. In method="minmax"
the upper and lower boundaries used to calculate "thickness"
are also returned as "tmin"
and "tmax"
columns, respectively.
data("jacobs2000") # cumulative thickness of horizon designations matching "Bt" thicknessOf(jacobs2000, "Bt") # maximum bottom depth minus minimum top depth of horizon designations matching "Bt" thicknessOf(jacobs2000, "Bt", prefix = "Bt_", method = "minmax") # cumulative thickness of horizon designations matching "A|B" thicknessOf(jacobs2000, "A|B", prefix = "AorB_") # maximum bottom depth minus minimum top depth of horizon designations matching "A|B" thicknessOf(jacobs2000, "A|B", method = "minmax", prefix = "AorB_") # note that the latter includes the thickness of E horizons between the A and the B # when using a custom function (be sure to accept ... and consider the effect of NA values) # calculate cumulative thickness of horizons containing >18% clay thicknessOf(jacobs2000, prefix = "claygt18_", FUN = function(x, ...) !is.na(x[["clay"]]) & x[["clay"]] > 18)
data("jacobs2000") # cumulative thickness of horizon designations matching "Bt" thicknessOf(jacobs2000, "Bt") # maximum bottom depth minus minimum top depth of horizon designations matching "Bt" thicknessOf(jacobs2000, "Bt", prefix = "Bt_", method = "minmax") # cumulative thickness of horizon designations matching "A|B" thicknessOf(jacobs2000, "A|B", prefix = "AorB_") # maximum bottom depth minus minimum top depth of horizon designations matching "A|B" thicknessOf(jacobs2000, "A|B", method = "minmax", prefix = "AorB_") # note that the latter includes the thickness of E horizons between the A and the B # when using a custom function (be sure to accept ... and consider the effect of NA values) # calculate cumulative thickness of horizons containing >18% clay thicknessOf(jacobs2000, prefix = "claygt18_", FUN = function(x, ...) !is.na(x[["clay"]]) & x[["clay"]] > 18)
Calculate the "Profile Darkness Index" by the method of Thompson & Bell (1996) "Color index for identifying hydric conditions for seasonally saturated mollisols in Minnesota" DOI: 10.2136/sssaj1996.03615995006000060051x. The Thompson-Bell Index has been shown to reflect catenary relationships in some Mollisols of Minnesota (generally: wetter landscape positions = thicker, darker surfaces).
thompson.bell.darkness( p, name = hzdesgnname(p, required = TRUE), pattern = "^A", value = "m_value", chroma = "m_chroma" )
thompson.bell.darkness( p, name = hzdesgnname(p, required = TRUE), pattern = "^A", value = "m_value", chroma = "m_chroma" )
p |
A single-profile SoilProfileCollection (e.g. via profileApply()) |
name |
Column name containing horizon designations used to find A horizons (default: first column name containing 'name') |
pattern |
Regular expression to match A horizons (default: "^A" which means horizon designation starts with A) |
value |
Column name containing horizon color values (default: "m_value") |
chroma |
Column name containing horizon color chromas (default: "m_chroma") |
A numeric vector reflecting horizon darkness (lower values = darker).
Andrew G. Brown
Thompson, J.A. and Bell, J.C. (1996), Color Index for Identifying Hydric Conditions for Seasonally Saturated Mollisols in Minnesota. Soil Science Society of America Journal, 60: 1979-1988. doi:10.2136/sssaj1996.03615995006000060051x
Traditional soil color names associated with select Munsell colors.
data(traditionalColorNames)
data(traditionalColorNames)
An object of class data.frame
with 482 rows and 2 columns.
Sourced from the "colorconverter" NASIS property script.
transform()
is a function used for modifying columns in SoilProfileCollections.
It allows the user to specify an arbitrary number of expressions that resolve to the (re-)calculation of one or more site or horizon level attributes. For instance: mutate(spc, thickness = hzdepb - hzdept)
. The expressions may depend on one another, and are evaluated from left to right.
## S4 method for signature 'SoilProfileCollection' transform(`_data`, ...)
## S4 method for signature 'SoilProfileCollection' transform(`_data`, ...)
_data |
A SoilProfileCollection |
... |
Comma-separated set of R expressions e.g. |
A SoilProfileCollection
Andrew G. Brown.
SoilProfileCollection
via MD5 HashUnique profiles within a SoilProfileCollection
using and MD5 hash of select horizon and / or site level attributes.
## S4 method for signature 'SoilProfileCollection' unique(x, vars, SPC = TRUE)
## S4 method for signature 'SoilProfileCollection' unique(x, vars, SPC = TRUE)
x |
a |
vars |
Variables to consider in uniqueness. |
SPC |
logical return a |
SoilProfileCollection
when SPC = TRUE
, otherwise a vector of integers
# an example soil profile x <- data.frame( id = 'A', name = c('A', 'E', 'Bhs', 'Bt1', 'Bt2', 'BC', 'C'), top = c(0, 10, 20, 30, 40, 50, 100), bottom = c(10, 20, 30, 40, 50, 100, 125), z = c(8, 5, 3, 7, 10, 2, 12) ) # init SPC depths(x) <- id ~ top + bottom # horizon depth variability for simulation horizons(x)$.sd <- 2 # duplicate several times x.dupes <- duplicate(x, times = 5) # simulate some new profiles based on example x.sim <- perturb(x, n = 5, thickness.attr = '.sd') # graphical check plotSPC(x.dupes, name.style = 'center-center') plotSPC(x.sim, name.style = 'center-center') # inspect unique results plotSPC(unique(x.dupes, vars = c('top', 'bottom')), name.style = 'center-center') # uniqueness is a function of variable selection plotSPC(unique(x.sim, vars = c('top', 'bottom')), name.style = 'center-center') plotSPC(unique(x.sim, vars = c('name')), name.style = 'center-center')
# an example soil profile x <- data.frame( id = 'A', name = c('A', 'E', 'Bhs', 'Bt1', 'Bt2', 'BC', 'C'), top = c(0, 10, 20, 30, 40, 50, 100), bottom = c(10, 20, 30, 40, 50, 100, 125), z = c(8, 5, 3, 7, 10, 2, 12) ) # init SPC depths(x) <- id ~ top + bottom # horizon depth variability for simulation horizons(x)$.sd <- 2 # duplicate several times x.dupes <- duplicate(x, times = 5) # simulate some new profiles based on example x.sim <- perturb(x, n = 5, thickness.attr = '.sd') # graphical check plotSPC(x.dupes, name.style = 'center-center') plotSPC(x.sim, name.style = 'center-center') # inspect unique results plotSPC(unique(x.dupes, vars = c('top', 'bottom')), name.style = 'center-center') # uniqueness is a function of variable selection plotSPC(unique(x.sim, vars = c('top', 'bottom')), name.style = 'center-center') plotSPC(unique(x.sim, vars = c('name')), name.style = 'center-center')
Generate a discretized vector of genetic horizons along a user-defined pattern.
unroll(top, bottom, prop, max_depth, bottom_padding_value = NA, strict = FALSE)
unroll(top, bottom, prop, max_depth, bottom_padding_value = NA, strict = FALSE)
top |
vector of upper horizon boundaries, must be an integer |
bottom |
vector of lower horizon boundaries, must be an integer |
prop |
vector of some property to be "unrolled" over a regular sequence |
max_depth |
maximum depth to which missing data is padded with NA |
bottom_padding_value |
value to use when padding missing data |
strict |
should horizons be strictly checked for self-consistency? defaults to FALSE |
This function is used internally by several higher-level components of the
aqp
package. Basic error checking is performed to make sure that
bottom and top horizon boundaries make sense. Note that the horizons should
be sorted according to depth before using this function. The
max_depth
argument is used to specify the maximum depth of profiles
within a collection, so that data from any profile shallower than this depth
is padded with NA.
a vector of "unrolled" property values
Dylan E. Beaudette
https://casoilresource.lawr.ucdavis.edu/
data(sp1) # subset a single soil profile: sp1.1 <- subset(sp1, subset=id == 'P001') # demonstrate how this function works x <- with(sp1.1, unroll(top, bottom, prop, max_depth=50)) plot(x, 1:length(x), ylim=c(90,0), type='b', cex=0.5)
data(sp1) # subset a single soil profile: sp1.1 <- subset(sp1, subset=id == 'P001') # demonstrate how this function works x <- with(sp1.1, unroll(top, bottom, prop, max_depth=50)) plot(x, 1:length(x), ylim=c(90,0), type='b', cex=0.5)
A listing of the 50 US state soils, along with Puerto Rico and Virgin Islands.
data(us.state.soils)
data(us.state.soils)
state name
abbreviated state name
soil series name
Are coordinate column names defined in metadata and existing in the SoilProfileCollection?
## S4 method for signature 'SoilProfileCollection' validSpatialData(object)
## S4 method for signature 'SoilProfileCollection' validSpatialData(object)
object |
a SoilProfileCollection |
logical TRUE
if column names are defined and correspond to existing data
This function applies a warping factor to the horizons of a single-profile SoilProfileCollection
object. Warping values >1 will inflate horizon thickness, values <1 will deflate horizon thickness.
warpHorizons(x, fact, updateProfileID = TRUE, suffix = "-w")
warpHorizons(x, fact, updateProfileID = TRUE, suffix = "-w")
x |
a |
fact |
numeric or character; warping factor specified as a single numeric value, vector of numeric values (length = nrow(x)), or column name of a horizon level attribute containing numeric values |
updateProfileID |
logical; modify profile IDs |
suffix |
character; suffix added to profile IDs when |
a modified version of x
, SoilProfileCollection
object
D.E. Beaudette and S.W. Salley
# create an example profile s <- quickSPC('p1:AA|Bt1Bt1Bt1|Bt2Bt2B|Bt3|Cr|RRRRR') # warp each horizon # values > 1: inflation # values < 1: deflation (erosion / compaction) s.w <- warpHorizons(s, fact = c(1.3, 0.7, 0.8, 1, 1, 1)) # combine original + warped x <- combine(s, s.w) # compute profile bottom depths .bottoms <- x[, , .LAST, .BOTTOM] # change in total depth after warping # used to vertically offset the warped profile .yoff <- c(0, .bottoms[1] - .bottoms[2]) # depths for line segments connecting horizon tops .y1 <- x[1, , .TOP] .y2 <- x[2, , .TOP] + .yoff[2] # sketches # can't automatically add a depth axis par(mar = c(0.5, 0, 0, 2)) plotSPC( x, name.style = 'center-center', cex.names = 0.8, width = 0.2, max.depth = 150, depth.axis = list(line = -3), y.offset = .yoff ) # illustrate warping with arrows arrows(x0 = 1 + 0.25, y0 = .y1, x1 = 2 - 0.25, y1 = .y2, len = 0.1, col = 2) # manually add depth axis axis(side = 4, line = -3.5, las = 1, at = seq(from = 0, to = 150, by = 25)) # apply to multiple profiles # text-based template .template <- c( 'P1:AAA|BwBwBwBw|CCCCCCC|CdCdCdCd', 'P2:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC', 'P3: A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR' ) # each horizon label is '10' depth-units (default) s <- quickSPC(.template) # random warping factor, by horizon s$f <- runif(n = nrow(s), min = 0.8, max = 1.2) # warp horizons by profile, result is a list of SPCs s.w <- profileApply(s, FUN = warpHorizons, fact = 'f') # flatten list -> SoilProfileCollection s.w <- combine(s.w) # combine with original SPC x <- combine(s, s.w) # sketches par(mar = c(0.5, 0, 0, 2.5)) plotSPC( x, name.style = 'center-center', cex.names = 0.8, width = 0.3, max.depth = 165, depth.axis = list(line = -2) )
# create an example profile s <- quickSPC('p1:AA|Bt1Bt1Bt1|Bt2Bt2B|Bt3|Cr|RRRRR') # warp each horizon # values > 1: inflation # values < 1: deflation (erosion / compaction) s.w <- warpHorizons(s, fact = c(1.3, 0.7, 0.8, 1, 1, 1)) # combine original + warped x <- combine(s, s.w) # compute profile bottom depths .bottoms <- x[, , .LAST, .BOTTOM] # change in total depth after warping # used to vertically offset the warped profile .yoff <- c(0, .bottoms[1] - .bottoms[2]) # depths for line segments connecting horizon tops .y1 <- x[1, , .TOP] .y2 <- x[2, , .TOP] + .yoff[2] # sketches # can't automatically add a depth axis par(mar = c(0.5, 0, 0, 2)) plotSPC( x, name.style = 'center-center', cex.names = 0.8, width = 0.2, max.depth = 150, depth.axis = list(line = -3), y.offset = .yoff ) # illustrate warping with arrows arrows(x0 = 1 + 0.25, y0 = .y1, x1 = 2 - 0.25, y1 = .y2, len = 0.1, col = 2) # manually add depth axis axis(side = 4, line = -3.5, las = 1, at = seq(from = 0, to = 150, by = 25)) # apply to multiple profiles # text-based template .template <- c( 'P1:AAA|BwBwBwBw|CCCCCCC|CdCdCdCd', 'P2:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC', 'P3: A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR' ) # each horizon label is '10' depth-units (default) s <- quickSPC(.template) # random warping factor, by horizon s$f <- runif(n = nrow(s), min = 0.8, max = 1.2) # warp horizons by profile, result is a list of SPCs s.w <- profileApply(s, FUN = warpHorizons, fact = 'f') # flatten list -> SoilProfileCollection s.w <- combine(s.w) # combine with original SPC x <- combine(s, s.w) # sketches par(mar = c(0.5, 0, 0, 2.5)) plotSPC( x, name.style = 'center-center', cex.names = 0.8, width = 0.3, max.depth = 165, depth.axis = list(line = -2) )
An example SoilProfileCollection
, derived from Wilson et al., 2022. Select data extracted from Appendix tables.
data(wilson2022)
data(wilson2022)
A SoilProfileCollection
with the following elements. Total elemental analysis by lithium borate fusion.
Horizon level attributes:
name: horizon designation
Al2O3: total Al (wt %)
Fe2O3: total Fe (wt %)
K2O: total K (wt %)
MgO: total Mg (wt %)
Na2O: total Na (wt %)
P2O5: total P (wt %)
SiO2: total Si (wt %)
CaO: total Ca(wt %)
Alo: Oxalate Extractable Al (g/kg)
Feo: Oxalate Extractable Fe (g/kg)
Fed: Dithionite extractable Fe (g/kg)
Fed_minus_Feo: Crystalline Fe (hydr)oxides (g/kg)
CIA: Chemical Index of Alteration, see original paper (ratio, unitless)
Fed_div_Fet: (ratio, unitless)
Fet: Total Fe from lithium borate fusion (g/kg)
resin_Pi: Hedley phosphorus fractions (mg/kg)
NaHCO3_Pi: Hedley phosphorus fractions (mg/kg)
labile_Pi: Sum of resin Pi and NaHCO3 Pi (mg/kg)
NaCO3_Po: Hedley phosphorus fractions (mg/kg)
NaOH_Pi: Hedley phosphorus fractions (mg/kg)
NaOH_Po: Hedley phosphorus fractions (mg/kg)
Ca_Pi: Hedley phosphorus fractions (mg/kg)
organic_P: Sum of NaHCO3 and NaOH Po fractions (mg/kg)
total_P: Total P from lithium borate fusion (mg/kg)
occluded_P: Difference between total P and sum of Hedley P fractions (mg/kg)
top: horizon top depth (cm)
bottom: horizon bottom depth (cm)
pedonID: pedon ID (serial number)
Site level attributes:
pm: parent material group
biome: biome
Stewart G. Wilson, Randy A. Dahlgren, Andrew J. Margenot, Craig Rasmussen, Anthony T. O'Geen. 2022. Expanding the Paradigm: The influence of climate and lithology on soil phosphorus, Geoderma: 421. doi:10.1016/j.geoderma.2022.115809
data(wilson2022) groupedProfilePlot(wilson2022, groups = 'pm', group.name.offset = -15, label = 'biome', name.style = 'center-center', color = 'CIA', cex.names = 0.66, cex.id = 0.66, width = 0.3) groupedProfilePlot(wilson2022, groups = 'biome', group.name.offset = -15, label = 'pm', name.style = 'center-center', color = 'Fet', cex.names = 0.66, cex.id = 0.66, width = 0.3)
data(wilson2022) groupedProfilePlot(wilson2022, groups = 'pm', group.name.offset = -15, label = 'biome', name.style = 'center-center', color = 'CIA', cex.names = 0.66, cex.id = 0.66, width = 0.3) groupedProfilePlot(wilson2022, groups = 'biome', group.name.offset = -15, label = 'pm', name.style = 'center-center', color = 'Fet', cex.names = 0.66, cex.id = 0.66, width = 0.3)
Format a LaTeX table with results
xtableTauW(result.tau, file.name = "tau_results_table.tex")
xtableTauW(result.tau, file.name = "tau_results_table.tex")
result.tau |
results returned by |
file.name |
name of file to write output TeX file; Default: |