Package 'aqp'

Title: Algorithms for Quantitative Pedology
Description: The Algorithms for Quantitative Pedology (AQP) project was started in 2009 to organize a loosely-related set of concepts and source code on the topic of soil profile visualization, aggregation, and classification into this package (aqp). Over the past 8 years, the project has grown into a suite of related R packages that enhance and simplify the quantitative analysis of soil profile data. Central to the AQP project is a new vocabulary of specialized functions and data structures that can accommodate the inherent complexity of soil profile information; freeing the scientist to focus on ideas rather than boilerplate data processing tasks <doi:10.1016/j.cageo.2012.10.020>. These functions and data structures have been extensively tested and documented, applied to projects involving hundreds of thousands of soil profiles, and deeply integrated into widely used tools such as SoilWeb <https://casoilresource.lawr.ucdavis.edu/soilweb-apps>. Components of the AQP project (aqp, soilDB, sharpshootR, soilReports packages) serve an important role in routine data analysis within the USDA-NRCS Soil Science Division. The AQP suite of R packages offer a convenient platform for bridging the gap between pedometric theory and practice.
Authors: Dylan Beaudette [aut, cre], Pierre Roudier [aut, ctb], Andrew Brown [aut, ctb]
Maintainer: Dylan Beaudette <[email protected]>
License: GPL (>= 3)
Version: 2.1.0
Built: 2025-01-07 04:25:05 UTC
Source: https://github.com/ncss-tech/aqp

Help Index


Algorithms for Quantitative Pedology

Description

The aqp (Algorithms for Quantitative Pedology) package for R was developed to address some of the difficulties associated with processing soils information, specifically related to visualization, aggregation, and classification of soil profile data. This package is based on a mix of S3/S4 functions and classes, and most functions use basic dataframes as input, where rows represent soil horizons and columns define properties of those horizons. Common to most functions are the requirements that horizon boundaries are defined as depth from 0, and that profiles are uniquely defined by an id column. The aqp package defines an S4 class, "SoilProfileCollection", for storage of profile-level metadata, as well as summary, print, and plotting methods that have been customized for common tasks related to soils data.

Details

Demos: demo(aqp)

Project homepage

Author(s)

Dylan E. Beaudette [email protected], Pierre Roudier, Andrew G. Brown

See Also

⁠depths<-()⁠, SoilProfileCollection(), sp1, sp2, sp3, sp4, sp5, sp6


Matrix/data.frame-like access to profiles and horizons in a SoilProfileCollection

Description

You can access the contents of a SoilProfileCollection by profile and horizon "index", i and j, respectively: spc[i, j, ...]. Subset operations are propagated to other slots (such as diagnostics or spatial) when they result in removal of sites from a collection.

  • i refers to the profile position within the collection. By default the order is based on the C SORT order of the variable that you specified as your unique profile ID at time of object construction. Note that if your ID variable was numeric, then it has been sorted as a character.

  • j refers to the horizon or "slice" index. This index is most useful when either a) working with slice'd SoilProfileCollection or b) working with single-profile collections. j returns the layer in the specified index positions for all profiles in a collection.

  • ... is an area to specify an expression that is evaluated in the subset. Currently supported

    • .LAST (last horizon in each profile): return the last horizon from each profile. This uses i but ignores the regular j index.

    • .FIRST (first horizon in each profile): return the last horizon from each profile. This uses i but ignores the regular j index.

    • .HZID (horizon index): return the horizon indices corresponding to i+j+... ("k") constraints

    • .NHZ (number of horizons): return the number of horizons in the profiles resulting from i+j+... ("k") constraints

Usage

## S4 method for signature 'SoilProfileCollection'
x[i, j, ..., drop = TRUE]

Arguments

x

a SoilProfileCollection

i

a numeric or logical value denoting profile indices to select in a subset

j

a numeric or logical value denoting horizon indices to select in a subset

...

non-standard expressions to evaluate in a subset

drop

Default: TRUE. When drop=FALSE placeholder horizons (profile ID with all other values NA) are created where the specified j index results in removal of all horizons.


Get column of horizon or site data in a SoilProfileCollection

Description

Get the data from a column accessed by name. Column names other than profile ID are not shared between site and horizons. Bonus: [[ gives access to all site and horizon level variables in tab complete for RStudio using the magrittr pipe operator!

Usage

## S4 method for signature 'SoilProfileCollection'
x[[i, j]]

Arguments

x

a SoilProfileCollection

i

an expression resolving to a single column name in site or horizon table

j

(not used)

Examples

data(sp2)
depths(sp2) <- id ~ top + bottom
site(sp2) <- ~ surface

# get with [[
sp2[['surface']]

# get using "unknown" expression:
#  "2nd + 3rd horizon column names"
for(i in horizonNames(sp2)[2:3])
 print(sp2[[i]])

data(sp5)

# some column names to work with
rgb.columns <- c("R25","G25","B25")

res <- lapply(rgb.columns, function(x) {

  # [[ allows you to access column names in a loop
  round(sp5[[x]] * 255)

})

# rename scaled results
names(res) <- paste0(rgb.columns,"_scl")

# add horizon ID to results
result <- data.frame(hzID = hzID(sp5), do.call('cbind', res))
head(result)

# join result back into horizons
horizons(sp5) <- result

Add or change column of horizon or site data in a SoilProfileCollection

Description

Add or change the data from a column accessed by name. Column names other than profile ID are not shared between site and horizons. The benefit of using double bracket setter over $ is that name can be calculated, whereas with $, it must be known a priori and hard coded.

When using the double bracket setter the length of input and output matching either the number of sites or number of horizons is used to determine which slot new columns are assigned to.

Usage

## S4 replacement method for signature 'SoilProfileCollection'
x[[i]] <- value

Arguments

x

a SoilProfileCollection

i

an expression resolving to a single column name in site or horizon table-

value

New value to replace – unit length or equal in length to number of sites or horizons in the collection.


Get data from column of horizon or site data in a SoilProfileCollection

Description

Get the data from a column accessed by name x$name. Column names other than profile ID are not shared between site and horizons.

Usage

## S4 method for signature 'SoilProfileCollection'
x$name

Arguments

x

a SoilProfileCollection

name

a single column name in site or horizon table

Examples

data(sp1)

depths(sp1) <- id ~ top + bottom

# get data from a column by name (prop)
sp1$prop

Set data in column of horizon or site data in a SoilProfileCollection

Description

Set the data in a column accessed by name spc$name. Column names other than profile ID are not shared between site and horizons.

When using $<-, the length of input and output matching either the number of sites or number of horizons is used to determine which slot new columns are assigned to. Use site(x)$name <- value or horizons(x)$name <- value to be explicit about which slot is being accessed.

Usage

## S4 replacement method for signature 'SoilProfileCollection'
x$name <- value

Arguments

x

a SoilProfileCollection

name

a single column name in site or horizon table

value

Replacement values: unit length or equal to number of horizons or sites.


Accumulate horizon depths, and reflect reversed depths, relative to new datum

Description

Fix old-style organic horizon depths or depths with a non-standard datum by the "depth accumulation" method.

Usage

accumulateDepths(
  x,
  id = NULL,
  hzdepths = NULL,
  hzname = NULL,
  hzdatum = 0,
  seqnum = NULL,
  pattern = "O",
  fix = TRUE
)

Arguments

x

A data.frame or SoilProfileCollection

id

unique profile ID. Default: NULL, if x is a SoilProfileCollection idname(x)

hzdepths

character vector containing horizon top and bottom depth column names. Default: NULL, if x is a SoilProfileCollection horizonDepths(x)

hzname

character vector containing horizon designation or other label column names. Default: NULL, if x is a SoilProfileCollection hzdesgnname(x)

hzdatum

a numeric vector to add to accumulated depths. Default: 0. Can be equal in length to number of profiles if x is a SoilProfileCollection or number of (unique) IDs if x is a data.frame.

seqnum

Optional: character vector containing record "sequence number" column name; used in-lieu of hzname (when NA) to identify "first" record in a profile

pattern

pattern to search for in hzname to identify matching horizons to append the profile to

fix

apply adjustments to missing (NA) depths and expand 0-thickness horizons? Default: TRUE

Details

The "depth accumulation" method calculates thicknesses of individual horizons and then cumulative sums them after putting them in id + top depth order. The routine tries to determine context based on hzname and pattern. The main transformation is if a top depth is deeper than the bottom depth, the depths are reflected on the Z-axis (made negative). The data are then id + top depth sorted again, the thickness calculated and accumulated to replace the old depths.

This function uses several heuristics to adjust data before transformation and thickness calculation:

Regex matching of horizon designation patterns and similar

  • matches of pattern where both top and bottom depth NA -> ⁠[0,1]⁠ ⁠[top,bottom]⁠ depth

  • REMOVE horizons that do not match pattern where both top and bottom depths NA

Over-ride hzname handling with the sequence column argument seqnum

  • if seqnum column specified "first record with NA hzname" is considered a pattern match if seqnum == 1

Trigger "fixing" with the fix argument:

  • Add 1 cm to bottom-most horizons with NA bottom depth

  • Add 1 cm thickness to horizons with top and bottom depth equal

  • Add 1 cm thickness to horizons with NA top depth and bottom depth 0

Value

A horizon-level data.frame, suitable for promoting to SPC with ⁠depths<-⁠, or a SoilProfileCollection, depending on the class of x.

Examples

# example using hzdatum argument
data(sp4)
depths(sp4) <- id ~ top + bottom
hz <- accumulateDepths(sp4,
                       id = "id",
                       hzdepths = c("top", "bottom"),
                       hzname = "name",
                       hzdatum = 5 * 1:length(sp4))
plot(hz)
  
# example using old-style O horizons
hz <- read.table(text = "peiidref hzdept hzdepb hzname seqnum phiid
                    1        11      0      5      A      2   295
                    2        11      1      0     Oe      1   294
                    3        11      5     13     C1      3   296
                    4        11     13     58     C2      4   297
                    5        11     58    152     C3      5   298
                    6        13      0      5      A      2   303
                    7        13      1      0     Oe      1   302
                    8        13      5     25     Bw      3   304
                    9        13     25     61      C      4   305
                    10       13     61     NA      R      5   306
                    11      136      0     13     A1      3   695
                    12      136      1      0     Oe      2   694
                    13      136      2      1     Oi      1   693
                    14      136     13     61     C1      4   696
                    15      136     61     76     C2      5   697")
                    
depths(hz) <- peiidref ~ hzdept + hzdepb

hz_fixed <- accumulateDepths(hz,
                             id = "peiidref",
                             hzdepths = c("hzdept", "hzdepb"),
                             hzname = "hzname")
is_valid <- checkHzDepthLogic(hz_fixed)$valid

test0 <- subset(hz_fixed, !is_valid)
test1 <- subset(hz_fixed, is_valid)

origO <- subset(hz, grepl("O", hzname))
fixedO <- subset(hz_fixed, grepl("O", hzname))

par(mfrow=c(2,1), mar=c(0,0,3,2))
plotSPC(origO, max.depth = 25)
plotSPC(fixedO, max.depth = 25)

Add Depth Brackets

Description

Add depth brackets to soil profile sketches.

Usage

addBracket(
  x,
  label.cex = 0.75,
  tick.length = 0.05,
  arrow.length = 0.05,
  offset = -0.3,
  missing.bottom.depth = NULL,
  ...
)

Arguments

x

data.frame object containing idname(x), top, bottom, and optionally label columns

label.cex

scaling factor for label font

tick.length

length of bracket "tick" mark

arrow.length

length of arrowhead

offset

left-hand offset from each profile

missing.bottom.depth

distance (in depth units) to extend brackets that are missing a lower depth (defaults to max depth of collection)

...

further arguments passed on to segments or arrows

Details

x may contain multiple records per profile. Additional examples can be found in this tutorial.

Note

This is a low-level plotting function: you must first plot a SoilProfileCollection object before using this function.

Author(s)

D.E. Beaudette

See Also

addDiagnosticBracket, plotSPC

Examples

# sample data
data(sp1)

# add color vector
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))

# promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom

# plot profiles
par(mar = c(0, 0, 0, 1))
plotSPC(sp1, width = 0.3)

# extract min--max depths associated with all A horizons
# result is a single-row data.frame / profile
combinedBracket <- function(i) {
  h <- horizons(i)
  idn <- idname(i)
  this.id <- h[[idn]][1]
  
  idx <- grep('^A', h$name)
  
  res <- data.frame(
    id = this.id,
    top = min(h$top[idx]), 
    bottom = max(h$bottom[idx], na.rm=TRUE)
  )
  names(res)[1] <- idn
  
  return(res)
}

# return matching horizon top / bottom depths for A or C horizons
# result is a 0 or more row data.frame / profile
individualBrackets <- function(i) {
  h <- horizons(i)
  idn <- idname(i)
  this.id <- h[[idn]][1]
  
  idx <- grep('^A|^C', h$name)
  
  res <- data.frame(
    id = this.id,
    top = h$top[idx], 
    bottom = h$bottom[idx]
  )
  names(res)[1] <- idn
  
  return(res)
}

# combined brackets
b1 <- profileApply(sp1, combinedBracket, frameify = TRUE)

# individual brackets
b2 <- profileApply(sp1, individualBrackets, frameify = TRUE)

# plot in reverse order
plotSPC(sp1, plot.order = rev(1:length(sp1)), width = 0.25)

# note that plotting order is derived from the call to `plotSPC(sp1)`
addBracket(b1, col='red', offset = -0.35)

# plot in reverse order
plotSPC(sp1, plot.order = rev(1:length(sp1)), width = 0.25)

# note that plotting order is derived from the call to `plotSPC(sp1)`
addBracket(b2, col='red', offset = -0.35)

Annotate Diagnostic Features

Description

Annotate diagnostic features within a sketch of soil profiles.

Usage

addDiagnosticBracket(
  s,
  kind,
  feature = "featkind",
  top = "featdept",
  bottom = "featdepb",
  ...
)

Arguments

s

SoilProfileCollection object

kind

filter applied to feature column of diagnostic horizons registered within s

feature

column name containing feature kind

top

column name containing feature top depth

bottom

column name containing feature top depth

...

additional arguments passed to addBracket

Details

Additional examples can be found in this tutorial.

Note

This is a low-level plotting function: you must first plot a SoilProfileCollection object before using this function.

Author(s)

D.E. Beaudette

See Also

addBracket, plotSPC


Symbolize Volume Fraction within a Soil Profile Collection Plot

Description

Symbolize volume fraction on an existing soil profile collection plot.

Usage

addVolumeFraction(
  x,
  colname,
  res = 10,
  cex.min = 0.1,
  cex.max = 0.5,
  pch = 1,
  col = "black"
)

Arguments

x

a SoilProfileCollection object

colname

character vector of length 1, naming the column containing volume fraction data (horizon-level attribute). Values should be within 0-100 percent.

res

integer, resolution of the grid used to symbolize volume fraction

cex.min

minimum symbol size

cex.max

maximum symbol size

pch

integer, plotting character code

col

symbol color, either a single color or as many colors as there are horizons in x

Details

This function can only be called after plotting a SoilProfileCollection object. Details associated with a call to plotSPC() are automatically accounted for within this function: e.g. plot.order, width, etc..

Note

It may be necessary to adjust both res, cex.min, and cex.max for optimal legibility.

Author(s)

D.E. Beaudette

See Also

plotSPC()


Summarize Soil Colors

Description

Summarize soil color data, weighted by occurrence and horizon thickness.

Usage

aggregateColor(
  x,
  groups = "genhz",
  col = "soil_color",
  colorSpace = "CIE2000",
  k = NULL,
  profile_wt = NULL,
  mixingMethod = c("estimate", "exact")
)

Arguments

x

a SoilProfileCollection object

groups

the name of a horizon or site attribute used to group horizons, see examples

col

the name of a horizon-level attribute with soil color specified in hexadecimal (i.e. "#rrggbb")

colorSpace

(now deprecated, removed in aqp 2.1) 'CIE2000' used for all cases

k

single integer specifying the number of colors discretized via PAM (cluster::pam()), see details

profile_wt

the name of a site-level attribute used to modify weighting, e.g. area

mixingMethod

method used to estimate "aggregate" soil colors, see mixMunsell()

Details

Weights are computed by: w_i = sqrt(sum(thickness_i)) * n_i where w_i is the weight associated with color i, thickness_i is the total thickness of all horizons associated with the color i, and n_i is the number of horizons associated with color i. Weights are computed within groups specified by groups.

Value

A list with the following components:

scaled.data

a list of colors and associated weights, one item for each generalized horizon label with at least one color specified in the source data

aggregate.data

a data.frame of weighted-mean colors, one row for each generalized horizon label with at least one color specified in the source data

Author(s)

D.E. Beaudette

See Also

generalize.hz()

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

# load some example data
data(sp1, package='aqp')

# upgrade to SoilProfileCollection and convert Munsell colors
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

# generalize horizon names
n <- c('O', 'A', 'B', 'C')
p <- c('O', 'A', 'B', 'C')
sp1$genhz <- generalize.hz(sp1$name, n, p)

# aggregate colors over horizon-level attribute: 'genhz'
a <- aggregateColor(sp1, groups = 'genhz', col = 'soil_color')

# check results
str(a)

## Not run: 
# aggregate colors over site-level attribute: 'group'
a <- aggregateColor(sp1, groups = 'group', col = 'soil_color')

# aggregate colors over site-level attribute: 'group'
# discretize colors to 4 per group
a <- aggregateColor(sp1, groups = 'group', col = 'soil_color', k = 4)

# aggregate colors over depth-slices
s <- dice(sp1, c(5, 10, 15, 25, 50, 100, 150) ~ soil_color)
s$slice <- paste0(s$top, ' cm')
s$slice <- factor(s$slice, levels=guessGenHzLevels(s, 'slice')$levels)
a <- aggregateColor(s, groups = 'slice', col = 'soil_color')

  # optionally plot with helper function
  if(require(sharpshootR))
    aggregateColorPlot(a)

# a more interesting example
  data(loafercreek, package = 'soilDB')
  
  # generalize horizon names using REGEX rules
  n <- c('Oi', 'A', 'BA','Bt1','Bt2','Bt3','Cr','R')
  p <- c('O', '^A$|Ad|Ap|AB','BA$|Bw', 
         'Bt1$|^B$','^Bt$|^Bt2$','^Bt3|^Bt4|CBt$|BCt$|2Bt|2CB$|^C$','Cr','R')
  loafercreek$genhz <- generalize.hz(loafercreek$hzname, n, p)
  
  # remove non-matching generalized horizon names
  loafercreek$genhz[loafercreek$genhz == 'not-used'] <- NA
  loafercreek$genhz <- factor(loafercreek$genhz)
  
  a <- aggregateColor(loafercreek, 'genhz')
  
  # plot results with helper function
  par(mar=c(1,4,4,1))
  aggregateColorPlot(a, print.n.hz = TRUE)
  
  # inspect aggregate data
  a$aggregate.data

## End(Not run)

Probabilistic Estimation of Soil Depth within Groups

Description

Estimate the most-likely depth to contact within a collection of soil profiles. Consider getSoilDepthClass followed by group-wise percentile estimation as a faster alternative.

Usage

aggregateSoilDepth(
  x,
  groups,
  crit.prob = 0.9,
  name = hzdesgnname(x),
  p = "Cr|R|Cd",
  ...
)

Arguments

x

a SoilProfileCollection object

groups

the name of a site-level attribute that defines groups of profiles within a collection

crit.prob

probability cutoff used to determine where the most likely depth to contact will be, e.g. 0.9 translates to 90% of profiles are shallower than this depth

name

horizon-level attribute where horizon designation is stored, defaults to hzdesgnname(x)

p

a REGEX pattern that matches non-soil genetic horizons

...

additional arguments to slab

Details

This function computes a probability-based estimate of soil depth by group. If no grouping variable exists, a dummy value can be used to compute a single estimate. The crit.prob argument sets the critical probability (e.g. 0.9) at which soil depth within a group of profiles is determined. For example, a crit.prob of 0.95 might result in an estimated soil depth (e.g. 120cm) where 95% of the profiles (by group) had depths that were less than or equal to 120cm.

Value

A data.frame is returned, with as many rows as there are unique group labels, as specified in groups.

Author(s)

D.E. Beaudette

See Also

estimateSoilDepth() slab()

Examples

data(sp1)
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

# set horizon designation in SPC
hzdesgnname(sp1) <- 'name'

aggregateSoilDepth(sp1, 'group', crit.prob = 0.9)

Calculate Relative Positions from Transect Data

Description

This function is used to support relative positioning of soil profiles by plotSPC, based on transect or gradient values typically associated with a site level attribute (e.g. elevation). Gradient values specified in x are translated to the range used by plotSPC (usually ⁠1, length(SPC)⁠) specified in x.min and x.max.

Usage

alignTransect(x, x.min, x.max, fix = TRUE, ...)

Arguments

x

numeric vector, describing values along a transect: distance, elevation, climatic variables, etc.. Typically sourced from the site level attributes of a SoilProfileCollection object. Order is not important.

x.min

numeric, lower boundary to relative position scale

x.max

numeric, upper boundary to relative position scale

fix

logical, attempt fixing overlapping positions with fixOverlap

...

additional arguments to fixOverlap

Details

See the Pair-Wise Distances by Generalized Horizon Labels tutorial for additional examples.

Value

list containing:

  • grad: values of x in ascending order

  • order: ordering vector of x

  • relative.pos: elements of x translated to the new relative scale defined by x.min and x.max

Examples

data("sierraTransect")

# split transects
g <- subset(sierraTransect, transect == 'Granite')
a <- subset(sierraTransect, transect == 'Andesite')

g.p <- alignTransect(g$elev, x.min = 1, x.max = length(g), fix = FALSE)
a.p <- alignTransect(a$elev, x.min = 1, x.max = length(a), fix = FALSE)

op <- par(mar=c(2,0,0,2), mfrow=c(2,1))

plotSPC(g, width=0.25, name.style='center-center', 
        cex.names=0.75, 
        relative.pos = g.p$relative.pos, plot.order = g.p$order)

axis(1, at = g.p$relative.pos, labels = g.p$grad, line = -1.5)

plotSPC(a, width=0.25, name.style='center-center', 
        cex.names=0.75, 
        relative.pos = a.p$relative.pos, plot.order = a.p$order)

axis(1, at = a.p$relative.pos, labels = a.p$grad, line = -1.5)


par(op)

Allocate soil properties within various classification systems.

Description

Generic function to allocate soil properties to different classification schemes.

Usage

allocate(
  ...,
  to = c("FAO Salt Severity", "FAO Black Soil", "ST Diagnostic Features"),
  droplevels = FALSE
)

Arguments

...

arguments to specific allocation functions, see details and examples

to

character specifying the classification scheme: FAO Salt Severity, FAO Black Soil (see details for the required ...)

droplevels

logical indicating whether to drop unused levels in factors. This is useful when the results have a large number of unused classes, which can waste space in tables and figures.

Details

This function is intended to allocate a set of soil properties to an established soil classification scheme, such as Salt Severity or Black Soil. Allocation is semantically different from classification. While classification is the 'act' of developing a grouping scheme, allocation is the assignment or identification of measurements to a established class (Powell, 2008).

Usage Details

Each classification scheme (to argument) uses a different set of arguments.

  • ⁠FAO Salt Severity⁠

    • EC: electrical conductivity column name, dS/m

    • pH: pH column name, saturated paste extract

    • ESP: exchangeable sodium percentage column name, percent

  • ⁠FAO Black Soils⁠

    • object: a data.frame or SoilProfileCollection

    • pedonid: pedon ID column name, required when object is a data.frame

    • hztop: horizon top depth column name, required when object is a data.frame

    • hzbot: horizon bottom depth column name, required when object is a data.frame

    • OC: organic carbon column name, percent

    • m_chroma: moist Munsell chroma column name

    • m_value: moist Munsell value column name

    • d_value: dry Munsell value column name

    • CEC: cation exchange capacity column name (NH4OAc at pH 7), units of cmol(+)/kg soil

    • BS: base saturation column name (NH4OAc at pH 7), percent

    • tropical: logical, data are associated with "tropical soils"

  • ⁠ST Diagnostic Features⁠

    • object: a data.frame or SoilProfileCollection

    • pedonid: pedon ID column name, required when object is a data.frame

    • hzname: horizon name column, required when object is a data.frame

    • hztop: horizon top depth column name, required when object is a data.frame

    • hzbot: horizon bottom depth column name, required when object is a data.frame

    • texcl: soil texture class (USDA) column name

    • rupresblkcem: rupture resistance column name

    • m_value: moist Munsell value column name

    • m_chroma: moist Munsell chroma column name

    • d_value: dry Munsell value column name

    • BS: base saturation column name (method ??), percent

    • OC: organic carbon column name, percent

    • n_value: ??

    • featkind: ??

Value

A vector or data.frame object.

Note

The results returned by allocate(to = "ST Diagnostic Features") currently return a limited set of diagnostic features that are easily defined. Also, the logic implemented for some features does not include all the criteria defined in the Keys to Soil Taxonomy.

Author(s)

Stephen Roecker

References

Abrol, I., Yadav, J. & Massoud, F. 1988. Salt-affected soils and their management. No. Bulletin 39. Rome, FAO Soils.

FAO. 2006. Guidelines for soil description. Rome, Food and Agriculture Organization of the United Nations.

FAO. 2020. DEFINITION | What is a black soil? (online). (Cited 28 December 2020). http://www.fao.org/global-soil-partnership/intergovernmental-technical-panel-soils/gsoc17-implementation/internationalnetworkblacksoils/more-on-black-soils/definition-what-is-a-black-soil/es/

Powell, B., 2008. Classifying soil and land, in: McKenzie, N.J., Grundy, M.J., Webster, R., Ringrose-Voase, A.J. (Eds.), Guidelines for Survey Soil and Land Resources, Australian Soil and Land Survey Handbook Series. CSIRO, Melbourne, p. 572.

Richards, L.A. 1954. Diagnosis and Improvement of Saline and Alkali Soils. U. S. Government Printing Office. 166 pp.

Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, D.C.

Examples

# Salt Severity
test <- expand.grid(
  EC  = sort(sapply(c(0, 0.75, 2, 4, 8, 15, 30), function(x) x + c(0, -0.05, 0.05))),
  pH  = c(8.1, 8.2, 8.3, 8.4, 8.5, 8.6),
  ESP = sort(sapply(c(0, 15, 30, 50, 70, 100), function(x) x + c(0, 0.1, -0.1)))
)
test$ss      <- with(test, allocate(EC = EC, pH = pH, ESP = ESP, to = "FAO Salt Severity"))
table(test$ss)

# Black Soil Category 1 (BS1)
test <- expand.grid(
  dept = seq(0, 50, 10),
  OC   = sort(sapply(c(0, 0.6, 1.2, 20, 40), function(x) x + c(0, -0.05, 0.05))),
  chroma_moist  = 2:4,
  value_moist   = 2:4,
  value_dry     = 4:6,
  thickness     = 24:26,
  CEC           = 24:26,
  BS            = 49:51,
  tropical      = c(TRUE, FALSE)
)
test$pedon_id <- rep(1:21870, each = 6)
test$depb     <- test$dept + 10

bs1 <- allocate(test, pedonid = "pedon_id", hztop = "dept", hzbot = "depb", 
                OC = "OC", m_chroma = "chroma_moist", m_value = "value_moist", 
                d_value = "value_dry", CEC = "CEC", BS = "BS", 
                to = "FAO Black Soil"
)

table(BS1 = bs1$BS1, BS2 = bs1$BS2)


# SoilProfileCollection interface

data(sp3)
depths(sp3) <- id ~ top + bottom
hzdesgnname(sp3) <- 'name'

# fake base saturation
horizons(sp3)$bs <- 75

plotSPC(sp3)

allocate(
  sp3, 
  to = 'FAO Black Soil', 
  OC = 'tc', 
  m_chroma = 'chroma', 
  m_value = 'value', 
  d_value = 'value',
  CEC = 'cec',
  BS = 'bs'
)

# make a copy and edit horizon values
x <- sp3
x$value <- 2
x$chroma <- 2
x$cec <- 26
x$tc <- 2

x$soil_color <- munsell2rgb(x$hue, x$value, x$chroma)

plotSPC(x)

allocate(
  x, 
  to = 'FAO Black Soil', 
  OC = 'tc', 
  m_chroma = 'chroma', 
  m_value = 'value', 
  d_value = 'value',
  CEC = 'cec',
  BS = 'bs'
)


# Soil Taxonomy Diagnostic Features
data(sp1)
sp1$texcl = gsub("gr|grv|cbv", "", sp1$texture)
df <- allocate(object = sp1, pedonid = "id", hzname = "name", 
               hzdept = "top", hzdepb = "bottom", texcl = "texcl", 
               to = "ST Diagnostic Features"
)
aggregate(featdept ~ id, data = df, summary)

Get aqp_df_class entry from metadata or return a safe value.

Description

This is an accessor and replacement method for the aqp_df_class entry in the metadata slot. This entry is used internally by methods that interact with data.frame objects and slots to ensure that the same class used to promote to the SoilProfileCollection initially is used throughout the process.

Usage

## S4 method for signature 'SoilProfileCollection'
aqp_df_class(object)

## S4 replacement method for signature 'SoilProfileCollection'
aqp_df_class(object) <- value

Arguments

object

a SoilProfileCollection

value

"data.frame", "data.table" or "tbl_df"


Return upper boundary of argillic horizon

Description

Returns the top depth of the argillic horizon as a numeric vector.

Usage

argillic.clay.increase.depth(p, clay.attr = "clay")

Arguments

p

A single-profile SoilProfileCollection object.

clay.attr

OPTIONAL: horizon attribute name referring to clay content. default: clay

Details

Uses crit.clay.argillic to determine threshold clay increase, and get.increase.matrix to determine where increase is met within a vertical distance of 30 cm.

Value

A numeric vector containing top depth of argillic horizon, if present, or NA.

Author(s)

Andrew Gene Brown

See Also

getArgillicBounds, get.increase.matrix, crit.clay.argillic

Examples

data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

p <- sp1[1]
attr <- 'prop' # clay contents 
foo <- argillic.clay.increase.depth(p, clay.attr = attr)
foo

Coerce SoilProfileCollection with as()

Description

SoilProfileCollections can be coerced to other R object types using as(spc, 'type').

Possible endpoints include: list, data.frame, SpatialPointsDataFrame and SpatialPoints.

Usage

## S4 method for signature 'SoilProfileCollection'
as.data.frame(x)

Arguments

x

a SoilProfileCollection

Value

list

data.frame

tbl_df

data.table

SpatialPointsDataFrame

sf

SpatialPoints

Examples

# load example data stored as SoilProfileCollection
data(sp5)

# sp5
str(sp5)

# list output
str(as(sp5, 'list'))

# data.frame output
str(as(sp5, 'data.frame'))

# Spatial Objects
# make some random coordinate data for each profile
sp5$x <- sp5$y <- rnorm(length(sp5))
initSpatial(sp5, crs = "OGC:CRS84") <- ~ x + y

if (requireNamespace("sf")) {

  # sf output
  str(as(sp5, 'sf'))

  # SpatialPointsDataFrame output
  str(as(sp5, 'SpatialPointsDataFrame'))

  # SpatialPoints output
  str(as(sp5, 'SpatialPoints'))
  
}

Barron & Torrent (1986) Redness Index in LAB color space

Description

Calculate Redness Index after Barron & Torrent (1986) "Use of the Kubelka—Munk Theory to Study the Influence of Iron Oxides on Soil Colour" using Munsell colors converted to LAB. DOI: 10.1111/j.1365-2389.1986.tb00382.x. Accepts vectorized inputs for hue, value and chroma, produces vector output.

Usage

barron.torrent.redness.LAB(hue, value, chroma)

Arguments

hue

A character vector containing Munsell hues (e.g. "7.5YR")

value

A numeric vector containing Munsell values

chroma

A numeric vector containing Munsell chromas

Value

A numeric vector of horizon redness index (higher values = redder).

Author(s)

Andrew G. Brown

References

Barron, V. and Torrent, J. (1986), Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour. Journal of Soil Science, 37: 499-510. doi:10.1111/j.1365-2389.1986.tb00382.x


Bootstrap Soil Texture Data

Description

Simulate realistic sand/silt/clay values (a composition) using multivariate Normal distribution or Dirichlet distribution. Simulations from the multivariate Normal distribution are based on the compositional mean and variance-covariance matrix. Simulations from the Dirichlet distribution are based on maximum likelihood estimation of alpha parameters.

Usage

bootstrapSoilTexture(ssc, method = c("dirichlet", "normal"), n = 100)

Arguments

ssc

a data.frame object with 3 columns: 'sand', 'silt', 'clay' and at least three rows of data within the range of 0-100 (percent). NA are automatically removed, but care should be taken to ensure that the sand/silt/clay values add to 100 percent. Simulations are based on these examples.

method

type of simulation: 'dirichlet' or 'normal'. See details.

n

number of simulated compositions. See details.

Details

Simulations from the multivariate normal distribution will more closely track the marginal distributions of sand, silt, and clay–possibly a better fit for "squished" compositions (TODO elaborate). However, these simulations can result in extreme (unlikely) estimates.

Simulations from the Dirichlet distribution will usually be a better fit (fewer extreme estimates) but require a fairly large number of records in ssc (n >= 30?) for a reliable fit.

Additional examples will be added to this tutorial.

Value

a list containing:

  • samples - data.frame of simulated sand, silt, clay values

  • mean - compositional mean

  • var - compositional variance-covariance matrix

  • D.alpha - (fitted) alpha parameters of the Dirichlet distribution, NULL when method = 'normal'

Author(s)

D.E. Beaudette

References

Aitchison, J. (1986) The Statistical Analysis of Compositional Data Monographs on Statistics and Applied Probability. Chapman & Hall Ltd., London (UK). 416p.

Aitchison, J, C. Barcel'o-Vidal, J.J. Egozcue, V. Pawlowsky-Glahn (2002) A concise guide to the algebraic geometric structure of the simplex, the sample space for compositional data analysis, Terra Nostra, Schriften der Alfred Wegener-Stiftung, 03/2003

Malone Brendan, Searle Ross (2021) Updating the Australian digital soil texture mapping (Part 1*): re-calibration of field soil texture class centroids and description of a field soil texture conversion algorithm. Soil Research. https://www.publish.csiro.au/SR/SR20283

Malone Brendan, Searle Ross (2021) Updating the Australian digital soil texture mapping (Part 2*): spatial modelling of merged field and lab measurements. Soil Research. https://doi.org/10.1071/SR20284

Examples

if(
requireNamespace("compositions") &
  requireNamespace("soiltexture")
) {
  
  # sample data, data.frame
  data('sp4')
  
  # filter just Bt horizon data
  ssc <- sp4[grep('^Bt', sp4$name), c('sand', 'silt', 'clay')]
  names(ssc) <- toupper(names(ssc))
  
  # simulate 100 samples
  s <- bootstrapSoilTexture(ssc, n = 100)
  s <- s$samples
  
  # empty soil texture triangle
  TT <- soiltexture::TT.plot(
    class.sys= "USDA-NCSS.TT",
    main= "",
    tri.sum.tst=FALSE,
    cex.lab=0.75,
    cex.axis=0.75,
    frame.bg.col='white',
    class.lab.col='black',
    lwd.axis=1.5,
    arrows.show=TRUE,
    new.mar = c(3, 0, 0, 0)
  )
  
  # add original data points
  soiltexture::TT.points(
    tri.data = s, geo = TT, col='firebrick', 
    pch = 3, cex = 0.5, lwd = 1, 
    tri.sum.tst = FALSE
  )
  
  # add simulated points
  soiltexture::TT.points(
    tri.data = ssc, geo = TT, bg='royalblue', 
    pch = 22, cex = 1, lwd = 1, 
    tri.sum.tst = FALSE
  )
  
  # simple legend
  legend('top', 
         legend = c('Source', 'Simulated'), 
         pch = c(22, 3), 
         col = c('black', 'firebrick'), 
         pt.bg = c('royalblue', NA), 
         horiz = TRUE, bty = 'n'
  )
  
  
}

Multinominal Brier Score

Description

Compute a multinominal Brier score from predicted class probabilities and observed class label. Lower values are associated with a more accurate classifier.

Usage

brierScore(x, classLabels, actual = "actual")

Arguments

x

data.frame of class probabilities (numeric) and observed class label (character), see examples

classLabels

vector of predicted class labels (probabilities), corresponding to column names in x

actual

name of column containing the observed class, should be character vector not factor

Value

a single Brier score, representative of data in x

Author(s)

D.E. Beaudette

References

Brier, Glenn W. 1950. "Verification of Forecasts Expressed in Terms of Probability." Monthly Weather Review 78 (1): 1-3. doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

Examples

# columns 'a', 'b', 'c' contain predicted probabilities
# column 'actual' contains observed class label

# a good classifier
d.good <- data.frame(
  a = c(0.05, 0.05, 0.10),
  b = c(0.90, 0.85, 0.75),
  c = c(0.05, 0.10, 0.15),
  actual = c('b', 'b', 'b'),
  stringsAsFactors = FALSE
)

# a rather bad classifier
d.bad <- data.frame(
  a = c(0.05, 0.05, 0.10),
  b = c(0.90, 0.85, 0.75),
  c = c(0.05, 0.10, 0.15),
  actual = c('c', 'c', 'c'),
  stringsAsFactors = FALSE
)

# class labels are factors
d.factors <- data.frame(
  a = c(0.05, 0.05, 0.10),
  b = c(0.90, 0.85, 0.75),
  c = c(0.05, 0.10, 0.15),
  actual = c('b', 'b', 'b'),
  stringsAsFactors = TRUE
)

# relatively low value = accurate
brierScore(x = d.good, classLabels = c('a', 'b', 'c'), actual = 'actual')

# high values = not accuate
brierScore(x = d.bad, classLabels = c('a', 'b', 'c'), actual = 'actual')

# message related to conversion of factor -> character
brierScore(x = d.factors, classLabels = c('a', 'b', 'c'), actual = 'actual')

Buntley-Westin (1965) Index

Description

Calculate "Color Development Equivalent" by the method of Buntley & Westin (1965) "A Comparative Study of Developmental Color in a Chestnut-Chernozem-Brunizem Soil Climosequence" DOI: 10.2136/sssaj1965.03615995002900050029x. Originally developed for Mollisols, the Buntley-Westin index has been used as a tool to separate soils based on depth to particular colors.

Usage

buntley.westin.index(hue, chroma)

Arguments

hue

A character vector containing Munsell hues (e.g. "7.5YR")

chroma

A numeric vector containing Munsell chromas

Value

A numeric vector reflecting horizon color development.

Author(s)

Andrew G. Brown

References

Buntley, G.J. and Westin, F.C. (1965), A Comparative Study of Developmental Color in a Chestnut-Chernozem-Brunizem Soil Climosequence. Soil Science Society of America Journal, 29: 579-582. doi:10.2136/sssaj1965.03615995002900050029x


Combine SoilProfileCollection objects

Description

Combine SoilProfileCollection objects or lists of SoilProfileCollection objects. This method provides ... expansion for the pbindlist method.

Usage

## S4 method for signature 'SoilProfileCollection'
c(x, ...)

## S4 method for signature 'SoilProfileCollection'
combine(...)

## S4 method for signature 'list'
combine(...)

Arguments

x

A SoilProfileCollection

...

SoilProfileCollection objects

Value

A SoilProfileCollection

Examples

# example data
spc1 <- random_profile(1, SPC = TRUE)
spc2 <- random_profile(2, SPC = TRUE)
spc3 <- random_profile('A', SPC = TRUE)

# combine into a single SPC, ... interface
spc <- combine(spc1, spc2, spc3)

# combine into a single SPC, list interface
spc <- combine(list(spc1, spc2, spc3))

# input are combined into a single SPC
spc <- c(spc1, spc2, spc3)

# result is a list when a mixture of objects are provided
spc <- c(spc1, bar=spc2, baz="foo")

Soil Data from the Central Sierra Nevada Region of California

Description

Site and laboratory data from soils sampled in the central Sierra Nevada Region of California.

Usage

data(ca630)

Format

List containing:

$site : A data frame containing site information.

user_site_id

national user site id

mlra

the MLRA

county

the county

ssa

soil survey area

lon

longitude, WGS84

lat

latitude, WGS84

pedon_key

national soil profile id

user_pedon_id

local soil profile id

cntrl_depth_to_top

control section top depth (cm)

cntrl_depth_to_bot

control section bottom depth (cm)

sampled_taxon_name

soil series name

$lab : A data frame containing horizon information.

pedon_key

national soil profile id

layer_key

national horizon id

layer_sequence

horizon sequence number

hzn_top

horizon top (cm)

hzn_bot

horizon bottom (cm)

hzn_desgn

horizon name

texture_description

USDA soil texture

nh4_sum_bases

sum of bases extracted by ammonium acetate (pH 7)

ex_acid

exchangeable acidity [method ?]

CEC8.2

cation exchange capacity by sum of cations method (pH 8.2)

CEC7

cation exchange capacity by ammonium acetate (pH 7)

bs_8.2

base saturation by sum of cations method (pH 8.2)

bs_7

base saturation by ammonium acetate (pH 7)

Details

These data were extracted from the NSSL database. ca630 is a list composed of site and lab data, each stored as data.frame objects. These data are modeled by a 1:many (site:lab) relation, with the pedon_id acting as the primary key in the site table and as the foreign key in the lab table.

Note

These data are out of date. Pending some new data + documentation. Use with caution

Source

https://ncsslabdatamart.sc.egov.usda.gov/

Examples

## Not run: 
library(tactile)
library(lattice)
library(Hmisc)
library(sp)

# check the data out:
data(ca630)
str(ca630)

# note that pedon_key is the link between the two tables

# make a copy of the horizon data
ca <- ca630$lab

# promote to a SoilProfileCollection class object
depths(ca) <- pedon_key ~ hzn_top + hzn_bot

# add site data, based on pedon_key
site(ca) <- ca630$site

# ID data missing coordinates: '|' is a logical OR
(missing.coords.idx <- which(is.na(ca$lat) | is.na(ca$lon)))

# remove missing coordinates by safely subsetting
if(length(missing.coords.idx) > 0)
	ca <- ca[-missing.coords.idx, ]

# register spatial data
initSpatial(ca) <- ~ lon + lat

# assign a coordinate reference system
prj(ca) <- 'EPSG:4269'

# check the result
print(ca)

# aggregate %BS 7 for all profiles into 1 cm slices
a <- slab(ca, fm= ~ bs_7)

# plot median & IQR by 1 cm slice
xyplot(
top ~ p.q50, 
data = a, 
lower=a$p.q25, 
upper=a$p.q75,
alpha=0.5,
ylim=c(160,-5), 
scales = list(alternating = 1, y = list(tick.num = 7)),
panel = panel.depth_function, 
prepanel = prepanel.depth_function,
ylab='Depth (cm)', xlab='Base Saturation at pH 7',
par.settings = tactile.theme(superpose.line = list(col = 'black', lwd = 2))
)

# aggregate %BS at pH 8.2 for all profiles by MLRA, along 1 cm slices
# note that mlra is stored in @site
a <- slab(ca, mlra ~ bs_8.2)

# keep only MLRA 18 and 22
a <- subset(a, subset=mlra %in% c('18', '22'))

# plot median & IQR by 1 cm slice, using different colors for each MLRA
xyplot(
top ~ p.q50, 
groups = factor(mlra), 
data = a,
lower=a$p.q25, 
upper=a$p.q75,
alpha=0.25,
sync.colors = TRUE,
ylim=c(160,-5), 
scales = list(alternating = 1, y = list(tick.num = 7)),
panel = panel.depth_function, 
prepanel = prepanel.depth_function,
ylab='Depth (cm)', xlab='Base Saturation at pH 7',
par.settings = tactile.theme(superpose.line = list(lwd = 2)),
auto.key = list(lines = TRUE, points = FALSE, columns = 2)
)



# Extract the 2nd horizon from all profiles as SPDF
ca.2 <- ca[, 2]

# subset profiles 1 through 10
ca.1.to.10 <- ca[1:10, ]

# basic plot method: profile plot
par(mar = c(0, 0, 3, 1))
plotSPC(ca.1.to.10, name='hzn_desgn', color = 'CEC7')

## End(Not run)

Check a SoilProfileCollection object for errors in horizon depths.

Description

This function inspects a SoilProfileCollection object, looking for four common errors in horizon depths:

  1. bottom depth shallower than top depth

  2. equal top and bottom depth

  3. missing top or bottom depth (e.g. NA)

  4. gap or overlap between adjacent horizons (only if byhz = FALSE)

Usage

checkHzDepthLogic(
  x,
  hzdepths = NULL,
  idname = NULL,
  fast = FALSE,
  byhz = FALSE
)

Arguments

x

SoilProfileCollection or data.frame object to check

hzdepths

character vector, describing top and bottom depths in a SoilProfileCollection or data.frame. horizonDepths(x) is used when x is a SoilProfileCollection.

idname

character, describing the column containing profile IDs in a SoilProfileCollection or data.frame. idname(x) is used when x is a SoilProfileCollection.

fast

logical, When TRUE, details about specific test results are not needed, the operation can allocate less memory and run approximately 5x faster.

byhz

logical, apply logic tests to profiles (FALSE) or individual horizons (TRUE)?

Value

A data.frame containing profile IDs, validity boolean (valid) and test results if fast = FALSE.

The data.frame will have as many rows as profiles in x (length(x)).

  • id : Profile IDs, named according to idname(x)

  • valid : boolean, profile passes all of the following tests

  • depthLogic : boolean, errors related to depth logic

  • sameDepth : boolean, errors related to same top/bottom depths

  • missingDepth : boolean, NA in top / bottom depths

  • overlapOrGap : boolean, gaps or overlap in adjacent horizons (NA when byhz = TRUE)

Author(s)

D.E. Beaudette, A.G. Brown, S.M. Roecker

Examples

## sample data

data(sp3)
depths(sp3) <- id ~ top + bottom

# these data should be clean
res <- checkHzDepthLogic(sp3)

head(res)

# less memory if only concerned about net validity
res <- checkHzDepthLogic(sp3, fast = TRUE)

head(res)

Test for a valid SoilProfileCollection

Description

Test for a valid SoilProfileCollection

Usage

checkSPC(x)

Arguments

x

a SoilProfileCollection object

Details

Test for valid SoilProfileCollection by checking for slots defined in the class prototype. Likely only used between major versions of aqp where internal structure of SoilProfileCollection has changed. Use checkHzDepthLogic to check for common errors in horizon depths.

Value

TRUE or FALSE. Consider using rebuildSPC() if FALSE.

Author(s)

D.E. Beaudette

See Also

rebuildSPC, checkHzDepthLogic


Convert colors into Munsell Notation

Description

Lookup the n closest Munsell chips from the munsell lookup table from various color notations. This function replaces rgb2munsell().

Usage

col2Munsell(col, space = c("sRGB", "CIELAB"), nClosest = 1)

Arguments

col

character vector of colors, data.frame or matrix of color coordinates in sRGB or CIELAB color space

space

character, one of sRGB or CIELAB, defines the input color system

nClosest

integer, number of closest Munsell colors to return (valid range is 1-20)

Value

an (NA-padded) data.frame containing hue, value, chroma, and CIE delta-E 2000 color contrast metric between source and nearest matching color(s).

Note

This function is fully vectorized and will pad output with NA-records when NA are present in color.

Author(s)

D.E. Beaudette

References

http://ncss-tech.github.io/AQP/ http://www.brucelindbloom.com/index.html?ColorCalcHelp.html https://www.munsellcolourscienceforpainters.com/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html http://www.cis.rit.edu/mcsl/online/munsell.php

Examples

# vector of named R colors
col2Munsell(c('red', 'green', 'blue'))

# sRGB matrix in the range of 0-255
col2Munsell(cbind(255, 0, 0))

# sRGB matrix in the range of 0-1
col2Munsell(cbind(1, 0, 0))

# 10YR 5/6 in CIELAB
col2Munsell(
  cbind(51.4337, 9.917916, 38.6889), 
  space = 'CIELAB'
)

# 2.5YR 6/8 in hex notation
col2Munsell("#D18158FF")

# 7.5YR 8/1 in sRGB {0, 1}
col2Munsell(
  cbind(0.8240707, 0.7856834, 0.7541048)
)

# 7.5YR 8/1 in sRGB {0, 255}
col2Munsell(
  cbind(0.8240707, 0.7856834, 0.7541048) * 255
)

# multple colors in CIELAB
col2Munsell(
  parseMunsell(c('10BG 6/6', '2.5YR 4/6'), returnLAB = TRUE),
  space = 'CIELAB'
)

# data.frame input
col2Munsell(
  data.frame(r = 1, g = 0, b = 0),
  space = 'sRGB'
)

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

# Munsell notation to sRGB triplets {0, 1} 
color <- munsell2rgb(
  the_hue = c('10YR', '2.5YR', '5YR'), 
  the_value = c(3, 5, 2.5), 
  the_chroma = c(5, 6, 2), 
  return_triplets = TRUE
)

# result is a data.frame of sRGB {0, 1}
color

# back-transform sRGB -> closest Munsell color
# sigma is the dE00 color contrast metric
col2Munsell(color, space = 'sRGB')

Collapse Horizons within Profiles Based on Pattern Matching

Description

Combines layers and aggregates data by grouping adjacent horizons which match pattern in hzdesgn or, alternately, share a common value in by argument. Numeric properties are combined using the weighted average, and other properties are derived from the dominant condition based on thickness of layers and values in each group.

Usage

collapseHz(
  x,
  pattern = NULL,
  by = NULL,
  hzdesgn = hzdesgnname(x, required = TRUE),
  FUN = function(x, pattern, hzdesgn, ...) grepl(pattern, x[[hzdesgn]], ignore.case =
    FALSE),
  ...,
  AGGFUN = NULL,
  ignore_numerics = NULL,
  na.rm = FALSE
)

Arguments

x

A SoilProfileCollection

pattern

character. A regular expression pattern to match in hzdesgn column. Default: NULL.

by

character. A column name specifying horizons that should be combined. Aggregation will be applied to adjacent groups of layers within profiles that have the same value in by. Used in lieu of pattern and hzdesgn. Default: NULL.

hzdesgn

character. Any character column containing horizon-level identifiers. Default: hzdesgnname(x, required = TRUE).

FUN

function. A function that returns a logical vector equal in length to the number of horizons in x. Used only when pattern is specified. See details.

...

Additional arguments passed to the matching function FUN.

AGGFUN

list. A named list containing custom aggregation functions. List element names should match the column name that they transform. The functions defined should take three arguments: x (a vector of horizon property values), top (a vector of top depths), and bottom (a vector of bottom depths). Default: NULL applies weighted.mean() to all numeric columns not listed in ignore_numerics and takes the dominant condition (value with greatest aggregate thickness sum) for all other columns. See details.

ignore_numerics

character. Vector of column names that contain numeric values which should not be aggregated using weighted.mean(). For example, soil color "value" and "chroma".

na.rm

logical. If TRUE NA values are ignored when calculating min/max boundaries for each group and in weighted averages. If FALSE NA values are propagated to the result. Default: FALSE.

Details

If a custom matching function (FUN) is used, it should accept arbitrary additional arguments via an ellipsis (...). It is not necessary to do anything with arguments, but the result should match the number of horizons found in the input SoilProfileCollection x.

Custom aggregation functions defined in the AGGFUN argument should either return a single vector value for each group*column combination, or should return a data.frame object with named columns. If the input column name is used as a column name in the result data.frame, then the values of that column name in the result SoilProfileCollection will be replaced by the output of the aggregation function. See examples.

Value

A SoilProfileCollection

Author(s)

Andrew G. Brown

See Also

hz_dissolve()

Examples

data(jacobs2000)

# calculate a new SPC with genhz column based on patterns
new_labels <- c("A", "E", "Bt", "Bh", "C")
patterns <- c("A", "E", "B.*t", "B.*h", "C")
jacobs2000_gen <- generalizeHz(jacobs2000, new = new_labels, pattern = patterns)

# use existing generalized horizon labels
i <- collapseHz(jacobs2000_gen, by = "genhz")

profile_id(i) <- paste0(profile_id(i), "_collapse")

plot(
  c(i, jacobs2000),
  color = "genhz",
  name = "name",
  name.style = "center-center",
  cex.names = 1
)
 
# custom pattern argument  
j <- collapseHz(jacobs2000,
                c(
                  `A` = "^A",
                  `E` = "E",
                  `Bt` = "[ABC]+t",
                  `C` = "^C",
                  `foo` = "bar"
                ))
profile_id(j) <- paste0(profile_id(j), "_collapse")
plot(c(j, jacobs2000), color = "clay")

# custom aggregation function for matrix_color_munsell
k <- collapseHz(jacobs2000,
                pattern = c(
                  `A` = "^A",
                  `E` = "E",
                  `Bt` = "[ABC]+t",
                  `C` = "^C",
                  `foo` = "bar"
                ),
                AGGFUN = list(
                  matrix_color_munsell = function(x, top, bottom) {
                    thk <- bottom - top
                    if (length(x) > 1) {
                      xord <- order(thk, decreasing = TRUE)
                      paste0(paste0(x[xord], " (t=", thk[xord], ")"), collapse = ", ")
                    } else
                      x
                  }
                )
              )
profile_id(k) <- paste0(profile_id(k), "_collapse_custom")

unique(k$matrix_color_munsell)

# custom aggregation function for matrix_color_munsell (returns data.frame)
m <- collapseHz(jacobs2000,
                pattern = c(
                  `A` = "^A",
                  `E` = "E",
                  `Bt` = "[ABC]+t",
                  `C` = "^C",
                  `foo` = "bar"
                ),
                AGGFUN = list(
                  matrix_color_munsell = function(x, top, bottom) {
                    thk <- bottom - top
                    if (length(x) > 1) {
                      xord <- order(thk, decreasing = TRUE)
                      data.frame(matrix_color_munsell = paste0(x, collapse = ";"),
                                 n_matrix_color = length(x))
                    } else {
                      data.frame(matrix_color_munsell = x, 
                                 n_matrix_color = length(x))
                    }
                  }
                )
              )
profile_id(m) <- paste0(profile_id(m), "_collapse_custom")

m$matrix_color_munsell.n_matrix_color

Visualize soil colors in Munsell notation according to within-group frequency.

Description

Visualize soil colors in Munsell notation according to within-group frequency.

Usage

colorChart(
  m,
  g = factor("All"),
  size = TRUE,
  annotate = FALSE,
  chip.cex = 3,
  chip.cex.min = 0.1,
  chip.cex.max = 1.5,
  chip.border.col = "black",
  annotate.cex = chip.cex * 0.25,
  annotate.type = c("count", "percentage"),
  threshold = NULL
)

Arguments

m

character vector of color in Munsell notation ('10YR 4/6')

g

factor describing group membership, typically a generalization of horizon designation, default value will generate a fake grouping that covers all of the colors in m

size

logical, encode group-wise frequency with chip size

annotate

logical, annotate color chip frequency

chip.cex

scaling factor applied to each color chip

chip.cex.min

lower limit for color chip frequency depiction

chip.cex.max

lower limit for color chip frequency depiction

chip.border.col

color for chip borders (outline)

annotate.cex

scaling factor for chip frequency annotation

annotate.type

character, within-group count or percentage

threshold

numeric within 0-1, color chips with proportion ⁠< threshold⁠ are removed

Value

a trellis object

Examples

# required for latticeExtra:useOuterStrips
if(!requireNamespace('latticeExtra')) {
  
  # two hue pages
  ric <- expand.grid(
    hue = c('5YR', '7.5YR'),
    value = 2:8,
    chroma = 2:8
  )
  
  # combine hue, value, chroma into standard Munsell notation
  ric <- sprintf("%s %s/%s", ric$hue, ric$value, ric$chroma)
  
  # note that chip frequency-based size is disabled 
  # because all chips have equal frequency
  colorChart(ric, chip.cex = 4, size = TRUE)
  
  # annotation of frequency
  colorChart(ric, chip.cex = 4, annotate = TRUE)
  
  # bootstrap to larger size
  ric.big <- sample(ric, size = 100, replace = TRUE)
  
  # frequency can be encoded in size
  colorChart(ric.big, chip.cex = 3)
  colorChart(ric.big, chip.cex = 5, annotate = TRUE)
     
  # constant size
  colorChart(ric.big, chip.cex = 3, size = FALSE)
  colorChart(ric.big, chip.cex = 3, size = FALSE, chip.border.col = 'NA')
  
  # simulate colors based dE00 thresholding
  p <- list(
    list(m = '10YR 4/4', thresh = 10, hues = c('10YR', '7.5YR'))
  )
  
  # perform 500 simulations
  s <- simulateColor(method = 'dE00', n = 500, parameters = p)
  
  # result is a list, use the first element
  colorChart(s[[1]], chip.cex = 4)
  
  # increase the possible range of color chip sizes
  colorChart(s[[1]], chip.cex = 4, chip.cex.min = 0.01, chip.cex.max = 2)
  
  # slightly funky support for neutral hues
  N <- sprintf('N %s/', 2:8)
  cols <- c(rep(N, times = 5), ric.big)
  
  # note special panel used to show neutral hues
  colorChart(cols, size = FALSE, annotate = TRUE)
  
  # filter proportions below given threshold
  colorChart(cols, size = FALSE, annotate = TRUE, threshold = 0.01, 
  chip.cex = 4, annotate.type = 'percentage')
  
}

Metrics of Contrast Suitable for Comparing Soil Colors

Description

Pair-wise comparisons of Munsell color specifications, based on the NCSS color contrast classes (Soil Survey Technical Note 2) and CIE delta-E 2000 metric.

Usage

colorContrast(m1, m2)

Arguments

m1

vector of Munsell colors ('10YR 3/3')

m2

vector of Munsell colors ('10YR 3/6')

Details

This function is fully vectorized but expects input to be of the same length. Use expand.grid() to generate suitable input from 1:many or many:1 type comparisons. See this tutorial for an expanded discussion and more examples. Neutral colors are not mentioned in SSTN2: in this function any comparison to a neutral color (e.g. 'N 3/') are assigned a delta-hue of 1. Since SSTN2 expects hues to be counted clock wise from 5R, it possible to get very large delta-hue values for otherwise adjacent colors: '5R' vs. '2.5R'. This will be addressed in an update to the standards.

The most meaningful representation of color contrast is the CIE2000 (dE00) metric.

Value

data.frame with the following columns:

  • m1: Munsell color 1

  • m2: Munsell color 2

  • dH: delta-hue, as computed by huePosition

  • dV: delta-value, absolute value of difference in Munsell value (m1 vs. m2)

  • dc: delta-chroma, absolute value of difference in Munsell chroma (m1 vs. m2)

  • dE00: delta-E00, e.g. the CIE delta-E as refined in 2000

  • cc: soil color contrast class, as specified in Soil Survey Technical Note 2.

Note

delta-E00 is computed by the farver package.

Author(s)

D.E. Beaudette

References

  1. https://en.wikipedia.org/wiki/Color_difference

See Also

colorContrastPlot, huePosition, huePositionCircle

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

# two sets of colors to compare
m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', '7.5YR 3/4')
m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3')

# contrast metrics
colorContrast(m1, m2)

# adjacent chips
colorContrast('10YR 3/3', '10YR 3/4')
colorContrast('10YR 3/3', '7.5YR 3/3')

# highly contrasting colors
# http://colour.granjow.net/fabercastell-polychromos.html
colorContrastPlot('10B 4/13', '10YR 10/15',
labels = c('helioblue-reddish', 'light cadmium yellow')
)


## Note: neutral hues aren't defined in TN2
# approximation / extension of the concept
colorContrast(m1 = 'N 3/', m2 = 'N 6/')

#
colorContrast(m1 = '10YR 3/3', m2 = 'N 3/')

m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', 'N 3/')
m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3')
colorContrast(m1, m2)

Color Contrast Plot

Description

A simple display of two sets of colors, NCSS color contrast class and CIE delta-E00.

Usage

colorContrastPlot(
  m1,
  m2,
  col.cex = 1,
  col.font = 2,
  d.cex = 1,
  cc.font = 3,
  dE00.font = 1,
  labels = c("m1", "m2"),
  label.cex = 1,
  label.font = 1,
  printMetrics = TRUE,
  ...
)

Arguments

m1

first set of Munsell colors for comparison (e.g. '5YR 3/2')

m2

second set of Munsell colors for comparison

col.cex

scaling factor for color labels

col.font

font for color labels

d.cex

contrast for contrast metric labels

cc.font

font for contrast class

dE00.font

font for delta-E00

labels

labels for compared colors, vector length 2

label.cex

scaling factor for labels

label.font

font for labels

printMetrics

logical, print metrics between color swatches

...

further arguments to colorspace::swatchplot

Note

This function requires the farver package for calculation of CIE delta-E00.

Author(s)

D.E. Beaudette

See Also

colorContrast()

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

# two sets of colors to compare
m1 <- c('10YR 6/3', '7.5YR 3/3', '10YR 2/2', '7.5YR 3/4')
m2 <- c('5YR 3/4', '7.5YR 4/4', '2.5YR 2/2', '7.5YR 6/3')

# contrast metrics
colorContrast(m1, m2)

# graphical display
colorContrastPlot(m1, m2)

Soil Color Range via Quantiles

Description

Estimate central tendency and spread of soil color using marginal quantiles and L1 median of CIELAB coordinates.

Usage

colorQuantiles(soilColors, p = c(0.05, 0.5, 0.95))

Arguments

soilColors

vector of R colors (sRGB colorspace)

p

marginal quantiles of interest

Details

Colors are converted from sRGB to CIELAB (D65 illuminant), marginal quantiles of (L,A,B) coordinates are estimated, and L1 median (L,A,B) is estimates. The closest Munsell chips (via Munsell/CIELAB lookup table provided by munsell) and R colors are determined by locating chips closest to the marginal quantiles and L1 median.

The results can be conveniently inspected using plotColorQuantiles().

Value

A List containing the following elements:

  • marginal: data.frame containing marginal quantiles in CIELAB (D65), closest Munsell chips, and dE00

  • L1: L1 median CIELAB (D65) values, closest Munsell chip, and dE00

Author(s)

D.E. Beaudette

Examples

## Not run: 
# example data, see manual page for details
data(sp5)

# slice top 25 cm
# 24-25cm is the last slice
s <- dice(sp5, 0:24 ~ .)

# check some of the data
par(mar=c(0,0,0,0))
plotSPC(sample(s, 25), divide.hz = FALSE, name = '', print.id = FALSE, width = 0.5)

# colors
previewColors(unique(s$soil_color))

# compute marginal quantiles and L1 median
cq <- colorQuantiles(s$soil_color)

# simple graphical display of results
plotColorQuantiles(cq)

## End(Not run)

Compare Site Level Attributes of a SoilProfileCollection

Description

Compare site level attributes of a SoilProfileCollection object, returning a distance matrix conformal with the output from NCSP(). Values are within the range of 0-1.

Usage

compareSites(x, vars, weights = rep(1, times = length(vars)), ...)

Arguments

x

SoilProfileCollection object

vars

character vector listing one or more site level attributes of x

weights

numeric vector, same length as vars, variable weighting

...

additional arguments to cluster::daisy()

Details

This function is typically used in conjunction with the output from NCSP().

Value

dissimilarity / dist class object containing pair-wise distances, row/column names derived from profile_id(x)

See Also

NCSP() cluster::daisy()


Return a list representation of site and horizon level data

Description

compositeSPC() is a convenience function that returns a named list representation of the columns from the @site and @horizons slots.

Usage

compositeSPC(object)

Arguments

object

A SoilProfileCollection

Value

A list.

Author(s)

Andrew G. Brown.


Confusion Index

Description

Calculate the confusion index of Burrough et al., 1997.

Usage

confusionIndex(x)

Arguments

x

vector of probabilities (0,1), should not contain NA

Value

A single numeric value.

Author(s)

D.E. Beaudette

References

Burrough, P.A., P.F.M. van Gaans, and R. Hootsmans. 1997. "Continuous Classification in Soil Survey: Spatial Correlation, Confusion and Boundaries." Geoderma 77: 115-35. doi:10.1016/S0016-7061(97)00018-9.

Examples

# a very simple example
p <- c(0.25, 0.25, 0.4, 0.05, 0.05)
confusionIndex(p)

# for comparison
shannonEntropy(p)

Color Contrast Chart

Description

Compare one or more pages from a simulated Munsell book of soil colors to a reference color.

Usage

contrastChart(
  m,
  hues,
  ccAbbreviate = 1,
  style = "hue",
  gridLines = FALSE,
  de00.cex = 0.6,
  cc.cex = 0.6,
  thresh = NULL,
  returnData = FALSE
)

Arguments

m

Munsell representation of a single color for comparison e.g. '10YR 4/3'

hues

vector of one or more Munsell hue pages to display

ccAbbreviate

length of abbreviated contrast classes, use 0 to suppress labels

style

'hue' or 'CC', see details

gridLines

logical, add grid lines to the color contrast chart

de00.cex

character scaling applied to dE00 annotation

cc.cex

character scaling applied to contrast class annotation

thresh

threshold (<) applied to pair-wise comparisons and resulting color chips

returnData

logical, return lattice figure + data used to generate the figure

Details

A simulated Munsell color book page or pages are used to demonstrate color contrast between all chips and the reference color m (highlighted in red). NCSS color contrast class and CIE delta-E00 values are printed below all other color chips. Munsell color chips for chroma 5 and 7 are omitted, but axis labels are retained as a reminder of this fact.

Setting style='hue' emphasizes the contrast classes and CIE delta-E00 of chips adjacent to m. Setting style='CC' emphasizes adjacent chips according to respective contrast class via lattice panels.

Two-way panels are used when multiple hues are provided and style='CC'. The default output can be greatly enhanced via:

latticeExtra::useOuterStrips(..., strip = strip.custom(bg=grey(0.85)), strip.left = strip.custom(bg=grey(0.85)) )

Author(s)

D.E. Beaudette

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

# single hue page
contrastChart(m = '10YR 3/3', hues = '10YR')

# multiple hue pages
contrastChart(m = '10YR 3/3', hues = c('10YR', '2.5Y'))

# contrast class, single hue
contrastChart(m = '10YR 3/3', hues = '10YR', style='CC')

# contrast class, multiple hues
# consider latticeExtra::useOuterStrips()
contrastChart(m = '10YR 5/6', hues = c('10YR', '2.5Y'), style='CC')

Soil Color Contrast

Description

Determine soil color contrast class according to methods outlined in the Soil Survey Manual. This function is typically called from colorContrast() which is simpler to use and provides more information.

Usage

contrastClass(v1, c1, v2, c2, dH, dV, dC, verbose = FALSE)

Arguments

v1

Munsell value of first color

c1

Munsell chroma of first color

v2

Munsell value of second color

c2

Munsell chroma of second color

dH

delta Hue

dV

delta Value

dC

delta Chroma

verbose

return a list for testing rules/cases

Details

This function is fully vectorized but expects all inputs have the same length.

Value

A vector of color contrast classes (ordered factor). A list when verbose is TRUE.

Author(s)

D.E. Beaudette

References

See Also

colorContrast

Examples

## standard use, result is an ordered factor
# 10YR 6/3 vs 5YR 3/4
contrastClass(v1=6, c1=3, v2=3, c2=4, dH=2, dV=3, dC=1)

## verbose output, useful for testing rules/cases
# 10YR 6/3 vs 5YR 3/4
contrastClass(v1=6, c1=3, v2=3, c2=4, dH=2, dV=3, dC=1, verbose = TRUE)

Apply rock fragment or salt correction to available water content

Description

Apply rock fragment or salt correction to available water content

Usage

correctAWC(
  awc,
  total_rf = numeric(length(awc)),
  gravel = NULL,
  ec = NULL,
  nullFragsAreZero = TRUE
)

Arguments

awc

Numeric vector of available water capacities (e.g. from estimateAWC)

total_rf

Numeric vector of rock fragment volume percentage, 0 - 100

gravel

Numeric vector of gravel volume percentage, 0 - 100

ec

Numeric vector of electrical conductivity, mmhos/cm

nullFragsAreZero

Interpret NA in total_rf, gravel or ec as 0? Default: TRUE

Value

A numeric vector (double) containing estimated available water capacities corrected for rock fragments and salts

Examples

# medium organic matter, loam texture 
base.awc <- 0.18 # estimateAWC(texcl = "l", omcl = 2, na.rm = TRUE)

# medium organic matter, loam texture w/ 23% rock fragments by volume 
corrected.awc <- correctAWC(base.awc, total_rf = 23)
corrected.awc

# medium organic matter, loam texture w/ 0% frags by volume and 8 mmhos/cm salts
salty.awc <- correctAWC(base.awc, total_rf = 0, ec = 8)
salty.awc

Determines threshold (minimum) clay content for argillic upper bound

Description

Given a vector or matrix of "eluvial" horizon clay contents (\ crit.clay.argillic() returns a vector or matrix of minimum clay contents (thresholds) that must be met for an argillic horizon clay increase.

Usage

crit.clay.argillic(eluvial_clay_content)

Arguments

eluvial_clay_content

A numeric vector or matrix containing clay contents of potential "eluvial" horizons. May contain NA.

Details

Uses the standard equations for clay contents less than 15 \ and 40 \ the definition of the argillic horizon from 12th Edition Keys to Soil Taxonomy (Soil Survey Staff, 2014).

Value

A vector or matrix (input-dependent) containing minimum "illuvial" horizon clay contents (thresholds) to be met for argillic horizon clay increase.

Note

This function is intended for identifying clay content threshold required for an argillic horizon. These thresholds may not apply depending on the specifics of your soil. E.g. if the upper part of argillic has been plowed (has Ap immediately over upper boundary) the clay increase requirement can be waived (Soil Survey Staff, 2014).

Author(s)

Andrew Gene Brown

References

Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.

See Also

getArgillicBounds, get.increase.matrix

Examples

# crit.clay.argillic uses different equations for clay content
# less than 15 %, between 15 and 40 %, and >40 %

crit.clay.argillic(eluvial_clay_content=c(5, 20, 45))

Create a (redundant) horizon-level attribute from a site-level attribute

Description

Create a (redundant) horizon-level attribute from a site-level attribute. Specify a SoilProfileCollection and a site-level attribute from that SPC (by name) to receive a vector of length equal to the number of horizons containing the site-level values. This vector is directly usable with the SoilProfileCollection horizon setter.

denormalize is the inverse operation for the formula interface that "normalizes" a horizon level variable to site level:

site(object) <- ~ horizonvar

Usage

denormalize(object, attr)

Arguments

object

A SoilProfileCollection

attr

Site-level attribute name (character string) to denormalize to horizon.

Details

"Denormalization" is the process of trying to improve the read performance of a database, at the expense of losing some write performance, by adding redundant copies of data or by grouping data. Sometimes it is beneficial to have site-level attributes denormalized for grouping of horizon-level data in analyses. denormalize achieves this result for SoilProfileCollections.

Value

A vector of values of equal length to the number of rows in the horizon table of the input SPC.

Author(s)

Andrew G. Brown, Dylan Beaudette

Examples

data(sp1)

# create a SoilProfileCollection from horizon data
depths(sp1) <- id ~ top + bottom

# create random site-level attribute `sitevar` with a binary (0/1) outcome
sp1$sitevar <- round(runif(length(sp1)))

# use denormalize() to create a mirror of sitevar in the horizon table
# name the attribute something different (e.g. `hz.sitevar`) to 
# prevent collision with the site attribute
# the attributes can have the same name but you will then need 
# site() or horizons() to access explicitly
sp1$hz.sitevar <- denormalize(sp1, 'sitevar')

# compare number of profiles to number of sitevar assignments
length(sp1)
table(sp1$sitevar)

# compare number of horizons to number of horizon-level copies of sitevar `hz.'sitevar`
nrow(sp1)
table(sp1$hz.sitevar)

Get depth units from metadata

Description

Get units of depth measurement from metadata. Default value is centimeters.

Usage

## S4 method for signature 'SoilProfileCollection'
depth_units(object)

## S4 replacement method for signature 'SoilProfileCollection'
depth_units(object) <- value

Arguments

object

A SoilProfileCollection

value

character, a value representing units. Default 'cm'.

Examples

data(sp5)

## get depth units
du <- depth_units(sp5)

# set alternate units; e.g. inches
depth_units(sp5) <- 'in'

# replace original value (cm)
depth_units(sp5) <- du

Get top or bottom depths of horizons matching a regular expression pattern

Description

The depthOf family of functions calculate depth of occurrence of a horizon designation pattern, or any other value that can be coerced to character and matched with a regular expression.

If you need all depths of occurrence for a particular pattern, depthOf is what you are looking for. minDepthOf and maxDepthOf are wrappers around depthOf that return the minimum and maximum depth. They are all set up to handle missing values and missing "contacts" with the target pattern.

Usage

depthOf(
  p,
  pattern,
  FUN = NULL,
  top = TRUE,
  hzdesgn = hzdesgnname(p, required = TRUE),
  no.contact.depth = NULL,
  no.contact.assigned = NA_real_,
  na.rm = TRUE,
  simplify = TRUE
)

maxDepthOf(
  p,
  pattern,
  top = TRUE,
  hzdesgn = hzdesgnname(p, required = TRUE),
  no.contact.depth = NULL,
  no.contact.assigned = NA,
  na.rm = TRUE,
  simplify = TRUE
)

minDepthOf(
  p,
  pattern,
  top = TRUE,
  hzdesgn = hzdesgnname(p, required = TRUE),
  no.contact.depth = NULL,
  no.contact.assigned = NA,
  na.rm = TRUE,
  simplify = TRUE
)

Arguments

p

a SoilProfileCollection

pattern

a regular expression to match in the horizon designation column. See:hzdesgn

FUN

a function that returns a single value, and takes argument na.rm

top

should the top (TRUE) or bottom (FALSE) depth be returned for matching horizons? Default: TRUE.

hzdesgn

column name containing horizon designations. Default: guessHzDesgnName(p)

no.contact.depth

depth to assume that contact did not occur.

no.contact.assigned

depth to assign when a contact did not occur.

na.rm

logical. Remove NA? (default: TRUE)

simplify

logical. Return single profile results as vector (default: TRUE) or data.frame (FALSE)

Value

a numeric vector containing specified depth(s) of horizons matching a pattern. If length(p) > 1 then a data.frame containing profile ID, horizon ID, top or bottom depths, horizon designation and pattern.

Author(s)

Andrew G. Brown

Examples

# construct a fake profile
spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxerepts",
                  hzname   = c("A","AB","Bw","BC","R"),
                  hzdept   = c(0,  20, 32, 42,  49),
                  hzdepb   = c(20, 32, 42, 49, 200),
                  clay     = c(19, 22, 22, 21,  NA),
                  texcl    = c("l","l","l", "l","br"),
                  d_value  = c(5,   5,  5,  6,  NA),
                  m_value  = c(2.5, 3,  3,  4,  NA),
                  m_chroma = c(2,   3,  4,  4,  NA))

# promote to SoilProfileCollection
depths(spc) <- id ~ hzdept + hzdepb
hzdesgnname(spc) <- 'hzname'
hztexclname(spc) <- 'texcl'

# multiple horizons contain B
depthOf(spc, "B")

# deepest top depth of horizon containing B
maxDepthOf(spc, "B")

# shallowest top depth
minDepthOf(spc, "B")

# deepest bottom depth
maxDepthOf(spc, "B", top = FALSE)

# deepest bottom depth above 35cm
maxDepthOf(spc, "B", top = FALSE, no.contact.depth = 35)

# assign infinity (Inf) if B horizon does not start within 10cm
minDepthOf(spc, "B", no.contact.depth = 10, no.contact.assigned = Inf)

Initialize a SoilProfileCollection from data.frame

Description

⁠depths(<data.frame>) <- <formula>⁠: Initialize SoilProfileCollection

⁠depths(<SoilProfileCollection>)⁠: Extract profile ID and horizon depths from SoilProfileCollection

Usage

## S4 method for signature 'SoilProfileCollection'
depths(x, hzID = FALSE, ...)

## S4 replacement method for signature 'SoilProfileCollection'
depths(object) <- value

## S4 replacement method for signature 'data.frame'
depths(object) <- value

Arguments

x

A SoilProfileCollection

hzID

Include horizon ID? Usually this is calculated from the (sorted) row index unless ⁠hzidname()<-⁠ has been called. Default: FALSE

...

not used

object

An object to promote to SoilProfileCollection (inherits from data.frame)

value

A formula specifying the unique profile ID, top and bottom depth column names

Details

The input horizon data, and the resulting profile order, is sorted based on unique profile ID and top depth. ID columns are converted to character, depth columns are converted to integer. If NA values exist in all of the top depths, a prototype with 1 horizon per profile ID is returned, with NA in all non-essential columns. If the input object has 0 rows, a prototype with 0 horizons and 0 rows, but same column names as object, is returned.

Value

a data.frame containing profile ID, top depth, and bottom depth

See Also

horizons() idname() hzidname() horizonDepths()

Examples

# load a SoilProfileCollection
data(jacobs2000, package = "aqp")

depths(jacobs2000)
## init SoilProfileCollection objects from data.frame of horizon data

# load demo data
data(sp1)

# promote to SPC
depths(sp1) <- id ~ top + bottom

# plot
plot(sp1)

# number of profiles
length(sp1)

# number of horizons
nrow(sp1)

Return a vector of contributing fractions over a depth interval

Description

depthWeights() calculates the contributing fraction for each pair of horizon top and bottom depths, given an upper and lower boundary.

Usage

depthWeights(top, bottom, upper, lower)

Arguments

top

A numeric vector of horizon top depths.

bottom

A numeric vector of horizon bottom depths.

upper

A unit length numeric vector with upper boundary.

lower

A unit length numeric vector with lower boundary.

Value

A named list.

Author(s)

Andrew G. Brown.


Get or Set Diagnostic Horizon data in a SoilProfileCollection

Description

Diagnostic horizons describe features of the soil relevant to taxonomic classification. A single profile may have multiple diagnostic features or horizons, each of which may be comprised of multiple horizons.

  • diagnostic_hz() (get method): Get diagnostic feature data from a SoilProfileCollection.

  • ⁠diagnostic_hz<-⁠ (set method): Set diagnostic feature data for a SoilProfileCollection. The profile ID column from object (idname(object)) must be present in the replacement value object.

Usage

## S4 method for signature 'SoilProfileCollection'
diagnostic_hz(object)

## S4 replacement method for signature 'SoilProfileCollection'
diagnostic_hz(object) <- value

Arguments

object

A SoilProfileCollection

value

An object inheriting from data.frame

Examples

# load test data
data(sp2)

# promote to SPC
depths(sp2) <- id ~ top + bottom

# assign two profiles a zone related to the mollic epipedon
newdata <- data.frame(id = c("hon-1","hon-17"),
                      featkind = "fixed-depth surface sample",
                      featdept = 0,
                      featdepb = 18)

# do left join
diagnostic_hz(sp2) <- newdata

# inspect site table: newvalue TRUE only for horizons
#  with top depth equal to zero
diagnostic_hz(sp2)

Efficient Slicing of SoilProfileCollection Objects

Description

Cut ("dice") soil horizons into 1-unit thick slices. This function replaces aqp::slice(), which will be deprecated in aqp 2.0.

Usage

## S4 method for signature 'SoilProfileCollection'
dice(
  x,
  fm = NULL,
  SPC = TRUE,
  pctMissing = FALSE,
  fill = FALSE,
  strict = TRUE,
  byhz = TRUE,
  verbose = FALSE
)

Arguments

x

a SoilProfileCollection object

fm

optional formula describing top depths and horizon level attributes to include: integer.vector ~ var1 + var2 + var3 or integer.vector ~ . to include all horizon level attributes. Specification of integer.vector forces fill = TRUE. When NULL profiles are "diced" to depth and results will include all horizon level attributes. Note on interpretation of integer.vector (slice tops)

SPC

return the diced SoilPrfolileCollection, if FALSE a data.frame of horizon-level attributes

pctMissing

compute "percent missing data" by slice (when TRUE expect 6-8x longer run time)

fill

logical, fill with empty placeholder horizons in gaps within profiles, and/or, above/below interval specified in fm. Automatically set to TRUE when LHS of fm is specified. Backwards compatibility with slice is maintained by setting fill = TRUE with or without fm.

strict

perform horizon depth logic checking / flagging / removal

byhz

Evaluate horizon depth logic at the horizon level (TRUE) or profile level (FALSE). Invalid depth logic invokes HzDepthLogicSubset which removes offending profiles or horizon records.

verbose

Print information about object size/memory usage. Default: FALSE

Details

For large and potentially messy collections that may include missing horizon depth logic errors, consider using repairMissingHzDepths() before dice(). Consider using accumulateDepths() before invoking dice() on collections that may contain old-style O horizon notation (e.g. 5-0cm).

Value

a SoilProfileCollection object, or data.frame when SPC = FALSE

Author(s)

D.E. Beaudette and A.G. Brown

See Also

repairMissingHzDepths(), accumulateDepths(), fillHzGaps()


Duplicate Profiles of a SoilProfileCollection

Description

A simple function to duplicate the contents of a SoilProfileCollection object. Old profile IDs are saved as a site-level attribute (oldID) and new IDs are generated using a numeric serial number.

Usage

duplicate(x, times = 3, oldID = ".oldID")

Arguments

x

a SoilProfileCollection object with 1 or more profiles

times

requested number of copies

oldID

site-level attribute used to store the original profile IDs

Value

a SoilProfileCollection object

Author(s)

D.E. Beaudette

Examples

# sample data
data('sp4')

# promote to SPC
depths(sp4) <- id ~ top + bottom

# duplicate each profile 2 times
d <- duplicate(sp4, times = 2)

# graphical check
par(mar = c(0, 0, 3, 1))
plotSPC(d, color = 'Ca', width = 0.25)

Label placement based on a simulation of electrostatic forces

Description

This function attempts to move labels along a 1D coordinate system such that overlap (as specified by threshold) is minimized. An electrostatic simulation applies forces of repulsion between labels that are within thresh (e.g. overlapping) and forces of attraction to a uniformly spaced sequence to iteratively perturb affected labels until either no overlap is reported, or a maximum number of iterations (maxIter) has been reached.

Usage

electroStatics_1D(
  x,
  thresh,
  q = 1,
  chargeDecayRate = 0.01,
  QkA_GrowthRate = 0.05,
  maxIter = 100,
  tiny = 1e-04,
  const = 0.001,
  trace = FALSE,
  ...
)

Arguments

x

numeric vector, pre-sorted sorted, without duplication, describing 1D label (particle) configuration

thresh

numeric, overlap threshold, same as in fixOverlap()

q

numeric, electrical charge (typically between 0.1 and 2)

chargeDecayRate

numeric, exponential decay rate constant for q as a function of iteration i

QkA_GrowthRate

numeric, growth rate constant for Qk applied to attraction to uniform spacing of labels, invoked when rank order is violated during the simulation

maxIter

integer, maximum number of iterations before giving up

tiny

numeric, 0-values replaced by this number to avoid division by 0 and infinite forces

const

numeric, empirical constant added to the 1D electrostatic force equation to dampen oscillation: (Qk * Q1 * Q2) / (d^ex + const)

trace

logical, include diagnostic output

...

not used, absorbs additional arguments to fixOverlap()

Details

Difficult overlap problems can be addressed by reducing thresh and increasing q. Large values of q can lead to chaotic results.

This function will generate unpredictable output when x contains duplicate values.

This function requires input to be pre-sorted, although interesting "artistic" simulations will often result from unsorted x.

Value

When trace = TRUE a list, otherwise numeric vector with converged attribute.

Author(s)

D.E. Beaudette and K.C. Thompson

See Also

fixOverlap(), SANN_1D()

Examples

# vector of object locations, with potential overlap
x <- c(1, 2, 3, 3.3, 3.8, 5, 6, 7, 8, 9, 10)

# full diagnostic output
z <- electroStatics_1D(x, thresh = 0.65, trace = TRUE, q = 1)
txt <- sprintf("Converged %s (%s iterations)", z$converged, length(z$cost))

plot(
seq_along(z$cost),
z$cost, 
las = 1, 
xlab = 'Iteration', 
ylab = 'Overlap Cost', 
type = 'b', 
main = txt
)

abline(h = 0, lty = 2, col = 2)

# final configuration only
xnew <- electroStatics_1D(x, thresh = 0.65, q = 1)

# check for convergence
attr(xnew, 'converged')

# compare original vs. modified
data.frame(orig = x, new = round(xnew, 2))

Indices of "equivalent" Munsell chips in the munsell data set

Description

A pre-calculated lookup list (made with farver::compare_colour) based on pair-wise color contrast (CIE2000 or dE00) evaluated over all "chips" in the aqp::munsell data set.

The intention is to identify Munsell chips that may be "functionally equivalent" to some other given whole chip elsewhere in the Munsell color space – as discretized in the aqp::munsell lookup table.

"Equivalent" chips are based (fairly arbitrarily) on the 0.001 probability level of dE00 (default Type 7 quantile) within the upper triangle of the 8467x8467 contrast matrix. This corresponds to a dE00 threshold of approximately 2.15.

This is a naive (to the subtleties of human color perception, and overall magnitude of contrast between some of the "chips") but computationally consistent approach. Using the lookup list, as opposed to manual contrast via e.g. farver::compare_colour may have some benefits for efficiency in certain applications where the exact contrast value is not as important as the concept of having some threshold that is non-zero, but very small.

Usage

data(equivalent_munsell)

Format

A named list with 8467 elements, each containing a numeric vector of indices corresponding to the munsell data set, which has 8467 rows (unique, whole-number chips). Names have the format HUE VALUE/CHROMA, e.g. "7.5YR 4/4"

References

Gaurav Sharma, Wencheng Wu, Edul N. Dalal. (2005). The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. COLOR research and application. 30(1):21-30. http://www2.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf

Thomas Lin Pedersen, Berendea Nicolae and Romain Francois (2020). farver: High Performance Colour Space Manipulation. R package version 2.0.3. https://CRAN.R-project.org/package=farver

Dong, C.E., Webb, J.B., Bottrell, M.C., Saginor, I., Lee, B.D. and Stern, L.A. (2020). Strengths, Limitations, and Recommendations for Instrumental Color Measurement in Forensic Soil Characterization. J Forensic Sci, 65: 438-449. https://doi.org/10.1111/1556-4029.14193

See Also

equivalentMunsellChips

Examples

data(equivalent_munsell)

Identify "equivalent" (whole number value/chroma) Munsell chips

Description

Uses a pre-calculated lookup list (equivalent_munsell) based on pair-wise CIE2000 contrast (dE00) of LAB color with D65 illuminant for all whole value/chroma "chips" in the aqp::munsell data set.

The intention is to identify Munsell chips that may be "functionally equivalent" to some other given whole value/chroma chip elsewhere in the Munsell color space – as discretized in the aqp::munsell data table. This basic assumption needs to be validated against your end goal: probably by visual inspection of some or all of the resulting sets. See colorContrast and colorContrastPlot.

"Equivalent" chips table are based (fairly arbitrarily) on the 0.001 probability level of dE00 (default Type 7 quantile) within the upper triangle of the 8467x8467 contrast matrix. This corresponds to a dE00 contrast threshold of approximately 2.16.

Usage

equivalentMunsellChips(hue = NULL, value = NULL, chroma = NULL)

Arguments

hue

A character vector containing Munsell hues

value

A numeric vector containing Munsell values (integer only)

chroma

A numeric vector containing Munsell chromas (integer only)

Value

A named list; Each list element contains a data.frame with one or more rows of "equivalent" Munsell, RGB and LAB color coordinates from munsell data set.

References

Gaurav Sharma, Wencheng Wu, Edul N. Dalal. (2005). The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. COLOR research and application. 30(1):21-30. http://www2.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf

Thomas Lin Pedersen, Berendea Nicolae and Romain François (2020). farver: High Performance Colour Space Manipulation. R package version 2.0.3. https://CRAN.R-project.org/package=farver

Dong, C.E., Webb, J.B., Bottrell, M.C., Saginor, I., Lee, B.D. and Stern, L.A. (2020). Strengths, Limitations, and Recommendations for Instrumental Color Measurement in Forensic Soil Characterization. J Forensic Sci, 65: 438-449. https://doi.org/10.1111/1556-4029.14193

See Also

colorContrast colorContrastPlot equivalent_munsell

Examples

# 7.5YR 4/4 (the one and only)

equivalentMunsellChips("7.5YR", 4, 4)
#>
#> $`7.5YR 4/4`
#>        hue value chroma         r        g         b        L       A       B
#> 8330 7.5YR     4      4 0.4923909 0.352334 0.2313328 41.26403 10.8689 23.5914

# 7.5YR 1/1 (two chips are equivalent; 3 row result)

equivalentMunsellChips("7.5YR", 1, 1)
#>
#> $`7.5YR 1/1`
#>        hue value chroma         r         g          b        L        A        B
#> 1983  10YR     1      1 0.1345633 0.1087014 0.07606787 10.64787 1.621323 6.847629
#> 6189   5YR     1      1 0.1330994 0.1076359 0.09450179 10.63901 2.489012 3.515146
#> 8303 7.5YR     1      1 0.1329483 0.1082380 0.08862581 10.64210 2.065514 4.623922

# 10YR 6/8 (two chips are equivalent; 3 row result)

equivalentMunsellChips("10YR", 6, 8)
#>
#> $`10YR 6/8`
#>       hue value chroma         r         g         b        L        A        B
#> 2039 10YR     6      7 0.7382230 0.5512957 0.2680260 61.76795 10.50886 44.78574
#> 2040 10YR     6      8 0.7519872 0.5472116 0.2157209 61.77496 11.83215 51.15496
#> 2041 10YR     6      9 0.7642826 0.5433189 0.1559069 61.78085 13.09599 57.49773

# compare visually a very red color

veryred <- equivalentMunsellChips("10R", 6, 28)[[1]]

par(mar=c(0,0,1,1))

pie(rep(1, nrow(veryred)), col = with(veryred, munsell2rgb(hue, value, chroma)),
    label = with(veryred, sprintf("%s %s/%s", hue, value, chroma)))

table(veryred$hue) # 2 hues
#> 
#>  10R 7.5R 
#>    8   17

table(veryred$value) # 2 values
#> 
#>  5  6 
#> 11 14

table(veryred$chroma) # 10 chromas
#> 
#> 21 22 23 24 25 26 27 28 29 30 
#>  1  2  2  3  3  4  3  3  2  2

Estimate available water capacity for fine-earth fraction

Description

Estimate available water capacity for fine-earth fraction

Usage

estimateAWC(texcl, omcl, precision = 2, FUN = mean, ...)

Arguments

texcl

character, USDA textural class fine earth fraction

omcl

integer, Organic matter class. 1: less than 1.5 percent, 2: less than 5, 3: greate than 5

precision

integer, Number of decimal places in result default: 2

FUN

Function for interpolating between table values default: mean

...

Additional arguments to FUN

Value

A numeric vector double containing estimated available water capacities for fine-earth fraction.

Examples

# organic matter, loam texture, low medium and high OM
base.awc <- estimateAWC(c("l","l","l"), c(1, 2, 3), na.rm = TRUE)
base.awc

Estimate boundaries of the U.S Soil Taxonomy Particle Size Control Section

Description

Estimates the upper and lower boundary of the particle size control section for Mineral or Organic soilsby applying a programmatic version of the particle size control section key from the Keys to Soil Taxonomy (13th edition). See details for assumptions and required data elements.

Usage

estimatePSCS(
  p,
  hzdesgn = hzdesgnname(p, required = TRUE),
  clay.attr = hzmetaname(p, "clay", required = TRUE),
  texcl.attr = hztexclname(p, required = TRUE),
  lieutex = hzmetaname(p, "lieutex"),
  tax_order_field = "tax_order",
  bottom.pattern = "Cr|R|Cd|m",
  simplify = TRUE,
  ...
)

Arguments

p

A SoilProfileCollection

hzdesgn

Name of the horizon attribute containing the horizon designation. Default hzdesgnname(p, required = TRUE)

clay.attr

Name of the horizon attribute containing clay contents. Default hzmetaname(p, "clay", required = TRUE)

texcl.attr

Name of the horizon attribute containing textural class (used for finding sandy textures). Default hztexclname(p, required = TRUE)

lieutex

Optional data element used in addition to the horizon designation to identify kinds of organic soil material for soils with organic surfaces. Default: hzmetaname(p, "lieutex")

tax_order_field

Name of the site attribute containing taxonomic order; for handling PSCS rules for Andisols in lieu of lab data. May be NA or column missing altogether, in which case Andisol PSC possibility is ignored.

bottom.pattern

Regular expression pattern to match a root-restrictive contact. Default matches Cr, R, Cd or m. This argument is passed to both minDepthOf() and getArgillicBounds().

simplify

Return a length 2 vector with upper and lower boundary when p has length 1? Default TRUE.

...

additional arguments are passed to getArgillicBounds()

Details

Requires information to identify argillic horizons (clay contents, horizon designations) with getArgillicBounds() as well as the presence of plow layers and surface organic soil material. Any getArgillicBounds() arguments may be passed to estimatePSCS.

Also, requires information on taxonomic order to handle Andisols.

In aqp 2.1, particle size control sections of organic soils Histosols and Histels are supported. This requires setting the "lieutex" horizon metadata column using ⁠hzmetaname<-()⁠ Horizon designations containing "f" or "W" are recognized as permafrost and water layers, respectively, for application of the organic soils key to control sections. In lieu textures "SPM" and "PEAT" are used to identify low density organic materials used for surface tier thickness. To avoid using the 160 cm surface tier, set the "lieutex" column to any column that does not contain "SPM" or "PEAT" values.

WARNING: Soils in arenic or grossarenic subgroups, with fragipans, or with strongly contrasting PSCs may not be classified correctly. The author would welcome a dataset to develop this functionality for.

Value

A numeric vector (when simplify=TRUE) containing the top and bottom depth of the particle size control section. First value is top, second value is bottom. If p contains more than one profile, the result is a data.frame with profile ID plus PSCS top and bottom depths.

Author(s)

Andrew Gene Brown

References

Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.

See Also

getArgillicBounds(), getSurfaceHorizonDepth()

Examples

data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

# set required metadata
hzdesgnname(sp1) <- 'name'
hztexclname(sp1) <- 'texture'
hzmetaname(sp1, 'clay') <- 'prop'

x <- estimatePSCS(sp1)
x

# change horizon texture and set inlieu texture column to turn
# first profile into an organic soil
sp1$name[1:6] <- c("Oi1", "Oi2", "Oi3", "Oaf", "Cf1", "Cf2")
sp1$texture <- as.character(sp1$texture)
sp1$texture[1:6] <- c("PEAT", "PEAT", "PEAT", "MUCK", "GRVLS", "GRVLS")
sp1$bottom[6] <- 200
hzmetaname(sp1, 'lieutex') <- 'texture'

y <- estimatePSCS(sp1[1, ], simplify = FALSE)

# 74cm lower boundary is 25cm past the upper boundary of permafrost (49cm)
# but minimum depth is 100cm unless there is a root-limiting layer
y

Estimate dry soil colors from moist soil colors and vice versa.

Description

Soil color is typically described at dry and moist conditions. This function attempts to estimate soil color at dry or moist condition when one is missing. Estimation proceeds as:

  • convert Munsell notation to CIELAB color coordinates via munsell2rgb()

  • apply scaling, rotation, and translation parameters in CIELAB color space

  • locate closest Munsell chip to CIELAB coordinates via col2munsell()

Estimation of dry from moist soil color state is not guaranteed to be symmetric with estimation of moist from dry.

Usage

estimateSoilColor(hue, value, chroma, sourceMoistureState = c("dry", "moist"))

Arguments

hue

vector of Munsell hue ('10YR', '2.5Y', etc.)

value

vector of Munsell value (2,2.5 2.5, 3, 5, 6, etc.)

chroma

vector of Munsell chroma (2, 3, 4, etc.)

sourceMoistureState

character, source colors are either 'dry' or 'moist'

Details

Scaling, rotation, and translation parameters for shifting between dry <–> moist CIELAB coordinates was determined using vegan::procrustes(), from those official series descriptions (OSD) where moist and dry soil colors were available.

Estimates for colors having a (dry or moist) Munsell value of 10 are not likely correct.

This is still a work in progress.

Value

data.frame of estimated colors in Munsell notation. The sigma column contains CIE2000 color contrast metric values describing the perceptual distance between estimated color in CIELAB coordinates and closest Munsell chip.

Author(s)

D.E. Beaudette

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

estimateSoilColor(hue = '10YR', value = 3, chroma = 3, sourceMoistureState = 'moist')

# note that estimation is not symmetric
estimateSoilColor(hue = '10YR', value = 5, chroma = 3, sourceMoistureState = 'dry')

Estimate Soil Depth

Description

Estimate the soil depth of a single profile within a SoilProfileCollection object. This function would typically be called by profileApply().

Usage

estimateSoilDepth(
  f,
  name = hzdesgnname(f),
  p = "Cr|R|Cd",
  selection = min,
  no.contact.depth = NULL,
  no.contact.assigned = NULL
)

Arguments

f

SoilProfileCollection object of length 1, e.g. a single profile

name

name of the column that contains horizon designations

p

REGEX pattern for determining "contact", or depth to some morphologic feature (e.g. Bt)

selection

an R function applied in the presence of multiple matching horizons: min (default), max, mean, etc.

no.contact.depth

in the absence of contact matching p, a depth at which we can assume a standard depth-to-contact

no.contact.assigned

value assigned when no contact is encountered at or below no.contact.depth

Details

The choice of a selection function usually follows:

min: the top of the first matching horizon, max: the top bot the last matching horizon, or possibly mean: somewhere in-between.

Value

single value representing the depth to contact or no.contact.assigned

Author(s)

D.E. Beaudette and J.M. Skovlin

See Also

getSoilDepthClass, profileApply

Examples

## consider a situation where there were multiple candidate
## "contacts": 2 Cd horizons over an R

# init hypothetical profile
d <- data.frame(
  id = '1',
  top = c(0, 10, 20, 30, 40, 50, 60),
  bottom = c(10, 20, 30, 40, 50, 60, 80),
  name = c('A', 'Bt1', 'Bt2', 'BC', 'Cd1', 'Cd2', 'R'),
  stringsAsFactors = FALSE
)

# upgrade to SPC
depths(d) <- id ~ top + bottom

# init horizon designation
hzdesgnname(d) <- 'name'

# visual check
par(mar = c(0, 0, 0, 2))
plotSPC(d, hz.depths = TRUE, name.style = 'center-center', cex.names = 1, width = 0.1)

# top of the first Cd
estimateSoilDepth(d, name = 'name')

# top of the first Cd
estimateSoilDepth(d, name = 'name', selection = min)

# top of the R
estimateSoilDepth(d, name = 'name', selection = max)

# top of the second Cd
estimateSoilDepth(d, name = 'name', selection = max, p = 'Cd')


## another example

data(sp1)
depths(sp1) <- id ~ top + bottom

# init horizon designation
hzdesgnname(d) <- 'name'

# apply to each profile in a collection, and save as site-level attribute
sp1$depth <- profileApply(sp1, estimateSoilDepth, name='name')

# this function can be used to "find" depth to any feature 
# that can be defined via REGEX pattern matching on the horizon name
# for example, locate the depth to the top "Bt" horizon
# returning NA when there is no match
sp1$top_Bt <- profileApply(
  sp1, estimateSoilDepth, 
  name='name', 
  p='Bt', 
  no.contact.depth=0, 
  no.contact.assigned=NA
)

# reduced margins
par(mar=c(1,1,1,2))
# adjust default y-offset and depth scaling for following examples
plotSPC(sp1, y.offset=10, scaling.factor=0.5)

# get plotting parameters for profile widths and depth scaling factors
lsp <- get("last_spc_plot", envir = aqp.env)

# positions on x-axis, same for both depth and top "Bt" horizon
x.positions <- (1:length(sp1)) - lsp$width

# annotate contact with unicode right-arrow
# y-position is adjusted based on plot y-offset and scaling factor
y.positions <- lsp$y.offset + (sp1$depth * lsp$scaling.factor)
text(x.positions, y.positions, '\u2192', col='red', adj=1, cex=1.25, lwd=2)

# annotate top "Bt" depth with unicode right-arrow
# y-position is adjusted based on plot y-offset and scaling factor
y.positions <- lsp$y.offset + (sp1$top_Bt * lsp$scaling.factor)
text(x.positions, y.positions, '\u2192', col='blue', adj=1, cex=1.25, lwd=2)


## Not run: 
  # sample data
  data(gopheridge, package='soilDB')
  
  # run on a single profile
  estimateSoilDepth(gopheridge[1, ], name = 'hzname')
  
  # apply to an entire collection
  profileApply(gopheridge, estimateSoilDepth, name = 'hzname')

## End(Not run)

Evaluate Generalized Horizon Labels

Description

Data-driven evaluation of generalized horizon labels using nMDS and silhouette width.

Usage

evalGenHZ(
  obj,
  genhz = GHL(obj, required = TRUE),
  vars,
  non.matching.code = "not-used",
  stand = TRUE,
  trace = FALSE,
  metric = "euclidean"
)

Arguments

obj

a SoilProfileCollection object

genhz

name of horizon-level attribute containing generalized horizon labels

vars

character vector of horizon-level attributes to include in the evaluation

non.matching.code

code used to represent horizons not assigned a generalized horizon label

stand

standardize variables before computing distance matrix, passed to cluster::daisy()

trace

verbose output from passed to MASS::isoMDS()

metric

distance metric, passed to cluster::daisy()

Details

Non-metric multidimensional scaling is performed via MASS::isoMDS(). The input distance matrix is generated by cluster::daisy() using (complete cases of) horizon-level attributes from obj as named in vars.

Silhouette widths are computed via cluster::silhouette(). The input distance matrix is generated by cluster::daisy() using (complete cases of) horizon-level attributes from obj as named in vars. Note that observations with genhz labels specified in non.matching.code are removed filtered before calculation of the distance matrix.

Value

a list is returned containing:

  • horizons: ⁠c('mds.1', mds.2', 'sil.width', 'neighbor')⁠

  • stats: mean and standard deviation vars, computed by generalized horizon label

  • dist: the distance matrix as passed to MASS::isoMDS()

Author(s)

D.E. Beaudette

See Also

get.ml.hz()


Evaluate Missing Data within a SoilProfileCollection

Description

Evaluate missing data within a SoilProfileCollection object

Data completeness is evaluated by profile or by horizon. Profile-level evaluation is based on the thickness of horizons (method = absolute) with complete horizon-level attributes (vars), optionally divided by the total thickness (method = relative). The REGEX pattern (p) is used to filter non-soil horizons from the calculation.

Usage

evalMissingData(
  x,
  vars,
  name = hzdesgnname(x),
  p = "Cr|R|Cd",
  method = c("relative", "absolute", "horizon")
)

Arguments

x

SoilProfileCollection object

vars

character vector, naming horizon-level attributes in x

name

character, the name of a horizon-level attribute where horizon designations are stored, defaults to hzdesgnname(x)

p

character, REGEX pattern used to match non-soil horizons

method

character, one of: 'relative' (proportion of total) depth, 'absolute' depth, or 'horizon' (fraction not-missing by horizon)

Value

A vector values ranging from 0 to 1 (method = 'relative') or 0 to maximum depth in specified depth units (method = 'absolute') representing the quantity of non-missing data (as specified in vars) for each profile. When method = 'horizon' a non-missing data fraction is returned for each horizon.

Author(s)

D.E. Beaudette

Examples

# example data
data("jacobs2000")

# fully populated
plotSPC(jacobs2000, name.style = 'center-center', 
        cex.names = 0.8, color = 'time_saturated')

# missing some data
plotSPC(jacobs2000, name.style = 'center-center', 
        cex.names = 0.8, color = 'concentration_color')

# very nearly complete
plotSPC(jacobs2000, name.style = 'center-center', 
        cex.names = 0.8, color = 'matrix_color')


# variables to consider
v <- c('time_saturated', 'concentration_color', 'matrix_color')

# compute data completeness by profile
# ignore 2C horizons
jacobs2000$data.complete <- evalMissingData(
  jacobs2000, 
  vars = v, 
  method = 'relative',
  p = '2C'
)

jacobs2000$data.complete.abs <- evalMissingData(
  jacobs2000, 
  vars = v, 
  method = 'absolute',
  p = '2C'
)

# compute data completeness by horizon
# ignore 2C horizons
jacobs2000$hz.data.complete <- evalMissingData(
  jacobs2000, 
  vars = v, 
  method = 'horizon',
  p = '2C'
)


# "fraction complete" by horizon
plotSPC(
  jacobs2000, name.style = 'center-center', 
  cex.names = 0.8, color = 'hz.data.complete'
)


# rank on profile completeness
new.order <- order(jacobs2000$data.complete)

# plot along data completeness ranking
plotSPC(
  jacobs2000, name.style = 'center-center', 
  cex.names = 0.8, color = 'concentration_color', 
  plot.order = new.order
)

# add relative completeness axis
# note re-ordering of axis labels
axis(
  side = 1, at = 1:length(jacobs2000), 
  labels = round(jacobs2000$data.complete[new.order], 2),
  line = 0, cex.axis = 0.75
)

# add absolute completeness (cm)
axis(
  side = 1, at = 1:length(jacobs2000), 
  labels = jacobs2000$data.complete.abs[new.order],
  line = 2.5, cex.axis=0.75
)

Visual Explanation for plotSPC

Description

Create a visual explanation for the many arguments to plotSPC. Call this function instead of plotSPC, all objects after x are passed on to plotSPC. Nearly all of the figures in the Introduction to SoilProfileCollection Objects tutorial are created with this function.

Usage

explainPlotSPC(x, ...)

Arguments

x

a SoilProfileCollection object

...

arguments passed to plotSPC

Value

a list of internally-used ordering vectors and graphical offsets / scaling factors

Author(s)

D.E. Beaudette

See Also

plotSPC

Examples

# sample data
data(sp4)
depths(sp4) <- id ~ top + bottom

# proposed vector of relative positions, overlap likely
pos <- c(1, 1.1, 3, 4, 5, 5.2, 7, 8, 9, 10)

# try it
explainPlotSPC(sp4, name = 'name', relative.pos=pos)

# attempt to fix using an integer sequence, short-circut will prevent adjustments
explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(1:10))

# attempt to adjust using defaults
explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos))

# attempt to adjust and tinker with defaults
explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, adj = 0.2))

# enforce larger space between
explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, thresh = 0.7))

# more complex adjustments required
pos <- c(1, 2, 3, 3.3, 5, 5.1, 5.5, 8, 9, 10)

# tinker
explainPlotSPC(sp4, name = 'name', relative.pos = pos)
explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos))

explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, 
thresh = 0.7))

explainPlotSPC(sp4, name = 'name', relative.pos = fixOverlap(pos, 
thresh = 0.7, adj = 0.2))

# SANN: solution requires many iterations, and will not always converge
explainPlotSPC(sp4, name = 'name', 
relative.pos = fixOverlap(pos, thresh = 0.85, adj = 0.2)
)

# electrostatics: solution requires larger charge (q)
explainPlotSPC(sp4, name = 'name', 
relative.pos = fixOverlap(pos, thresh = 0.85, method = 'E', q = 2)
)

Find and Fill Horizon Gaps

Description

This function attempts to find "gaps" in the horizon records of a SoilProfileCollection object and fill with placeholder horizons (profile ID, horizon ID, to/bottom depths, all else NA). Missing horizon records between the top of each profile and to_top, or the bottom of each profile and to_bottom are treated as gaps when those arguments are not NULL. You can use this function to prepare a potentially messy SoilProfileCollection for subsequent analyses that are sensitive to horizon sequence inconsistencies or require a conformal "rectangle" of data spanning known depths.

Gaps are defined as:

  • within each profile, for horizons i to n_hz:

  • ⁠bottom_i != top_i+1 (but only to i = 1:(n_hz - 1)⁠

Usage

fillHzGaps(x, flag = TRUE, to_top = 0, to_bottom = max(x))

Arguments

x

SoilProfileCollection object

flag

logical, flag empty horizons that have been added. default: TRUE

to_top

numeric, fill from shallowest top depth in each profile to specified depth? default: 0

to_bottom

numeric, fill from deepest bottom depth in each profile to specified depth? default: aqp::max(x)

Value

a possibly modified SoilProfileCollection object

Author(s)

A.G. Brown and D.E. Beaudette

Examples

data(sp4)
depths(sp4) <- id ~ top + bottom

# introduce depth logic errors
idx <- c(2, 6:7, 8, 12)
sp4$top[idx] <- NA

# check
horizons(sp4)[idx, ]

# create gaps by removing logic errors
x <- HzDepthLogicSubset(sp4, byhz = TRUE)

# check on removed horizons (hzID values)
metadata(x)$removed.horizons

# inspect
par(mar = c(0, 0, 0, 2))
plotSPC(x, width = 0.3, default.color = 'royalblue', 
name = 'hzID', name.style = 'center-center', cex.names = 0.8,
cex.id = 0.66)

# fill gaps left by HzDepthLogicSubset()
z <- fillHzGaps(x, flag = TRUE)

# graphical check
plotSPC(z, width = 0.3, color = '.filledGap', name = 'hzID', 
show.legend = FALSE, name.style = 'center-center', cex.names = 0.8,
cex.id = 0.66)

# fill top to 0 cm
z2 <- fillHzGaps(x, flag = TRUE, to_top = 0)
plotSPC(z2, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE)

# fill bottom to max(SPC)
z3 <- fillHzGaps(x, flag = TRUE, to_top = 0, to_bottom = max(x))
plotSPC(z3, width = 0.3, color = '.filledGap', name = 'hzID', show.legend = FALSE)

## another example
data(sp4)
depths(sp4) <- id ~ top + bottom

# remove 1st horizons from profiles 1:4
idx <- sp4[,, .FIRST, .HZID]
replaceHorizons(sp4) <- horizons(sp4)[-idx[1:4], ]

# prepare for dice()
z <- fillHzGaps(sp4, to_top = 0, to_bottom = 50, flag = TRUE) 

# empty-horizon padding is in place for formula interface to dice()
d <- dice(z, fm = 0:50 ~ .)
plotSPC(d, color = 'Ca', show.legend = FALSE)
plotSPC(d, color = '.filledGap', show.legend = FALSE)

Find Overlap within a Sequence

Description

Establish which elements within a vector of horizontal positions overlap beyond a given threshold

Desc.

Usage

findOverlap(x, thresh)

overlapMetrics(x, thresh)

Arguments

x

vector of relative horizontal positions, one for each profile

thresh

threshold defining "overlap", typically < 1

@return a list:

  • idx: unique index to overlapping elements in x

  • ov: normalized overlap (see details)

Value

unique index to affected (overlapping) elements in x

Examples

x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10)

findOverlap(x, thresh = 0.5)


x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10)

overlapMetrics(x, thresh = 0.5)

Fix Overlap within a Sequence

Description

Fix Overlap within a Sequence

Usage

fixOverlap(x, thresh = 0.6, method = c("S", "E"), trace = FALSE, ...)

Arguments

x

vector of initial positions, pre-sorted

thresh

numeric, overlap threshold defined on the same scale as x

method

character vector, 'S' for simulated annealing via SANN_1D() or 'E' for electrostatic simulation via electroStatics_1D()

trace

logical, return full output

...

additional arguments to SANN_1D() or electroStatics_1D()

Value

When trace = FALSE, a vector of the same length as x, preserving rank-ordering and boundary conditions. When trace = TRUE a list containing the new sequence along with information about objective functions and decisions made during adjustment of x.

See Also

electroStatics_1D(), SANN_1D()

Examples

s <- c(1, 2, 2.3, 4, 5, 5, 7)

# simulated annealing, solution is non-deterministic
fixOverlap(s, thresh = 0.6, method = 'S')

# electrostatics-inspired simulation of particles
# solution is deterministic
fixOverlap(s, thresh = 0.6, method = 'E')


# create a very busy profile with lots of possible overlapping
# depth annotation
x <- quickSPC(
  "SPC:AAA|BBB|CCC|D|EEEEE|FF|GG|HH|I|I|JJ|KK|LL|M|N|O|P|QQQQ|RR|S|TTTTTT|U", 
  interval = 1
)

# convert horizon ID to numeric
x$z <- as.numeric(x$hzID)

# plotSPC arguments
.a <- list(
  width = 0.2, 
  hz.depths = TRUE, 
  name.style = 'center-center', 
  cex.names = 1.5, 
  depth.axis = FALSE, 
  name = NA,
  color = 'z',
  show.legend = FALSE,
  print.id = FALSE,
  col.palette = hcl.colors(n = 25, palette = 'Spectral', rev = TRUE)
)

# set plotSPC default arguments
options(.aqp.plotSPC.args = .a)

# wrapper function to test label collision solutions
testIt <- function(x, ...) {
  
  plotSPC(x, ...)
  
  # a normalized index of label adjustment
  .txt <- sprintf(
    "LAI: %0.3f", 
    get('last_spc_plot', envir = aqp.env)$hz.depth.LAI
  )
  mtext(.txt, side = 1, at = 1, line = -2, cex = 0.8)
  
}


# compare and contrast
op <- par(mar = c(0, 0, 0, 0), mfcol = c(1, 6))

testIt(x)
title('ES (defaults)', line = -3)

testIt(x, fixOverlapArgs = list(method = 'S'))
title('SANN (defaults)', line = -3)

testIt(x, fixOverlapArgs = list(method = 'E', q = 1.5))
title('ES (q = 1.5)', line = -3)

testIt(x, fixOverlapArgs = list(method = 'E', q = 1))
title('ES (q = 1)', line = -3)

testIt(x, fixOverlapArgs = list(method = 'E', q = 0.5))
title('ES (q = 0.5)', line = -3)

testIt(x, fixOverlapArgs = list(method = 'E', q = 0.1))
title('ES (q = 0.1)', line = -3)

par(op)

Flag perfectly overlapping horizons within a SoilProfileCollection

Description

Flag perfectly overlapping horizons within a SoilProfileCollection

Usage

flagOverlappingHz(x)

Arguments

x

a SoilProfileCollection object

Details

Horizons with NA depths can be flagged as overlapping. Consider finding these horizons with checkHzDepthLogic(byhz=TRUE) and removing or fixing them.

Value

logical vector with length (and order) matching the horizons of x

Author(s)

D.E. Beaudette, A.G. Brown

See Also

checkHzDepthLogic() fillHzGaps()

Examples

# two overlapping horizons
z <- data.frame(
  id = 'SPC',
  top = c(0, 25, 25, 50, 75, 100, 100),
  bottom = c(25, 50, 50, 75, 100, 125, 125)
)

# init SPC
depths(z) <- id ~ top + bottom

# flag perfectly overlapping horizons
z$.overlapFlag <- flagOverlappingHz(z)

# thematic sketches
plotSPC(z, color = '.overlapFlag', hz.depths = TRUE, 
depth.axis = FALSE, cex.names = 0.85)

Coarse Fragment Class Labels and Diameter

Description

This is a convenience function for accessing coarse fragment class labels and associated diameter (mm), as defined in various classification systems such as USDA, Unified, and AASHTO.

Usage

fragmentClasses(
  sys = c("usda_simplified", "usda", "international", "unified", "aashto",
    "mod.wentworth"),
  flat = FALSE,
  rounded = FALSE
)

Arguments

sys

character, length 1. This is an abbreviated name used to select class labels and fragment diameter.

flat

logical. Fragments are flat, only used by USDA systems.

rounded

logical. Fragments are rounded, only used by AASHTO system.

Value

named vector of fragment diameter in mm

References

Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and Soil Survey Staff. 2012. Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

See Also

fragmentSieve()

Examples

# use default system: "usda_simplified"
fragmentClasses()
fragmentClasses(flat = TRUE)

fragmentClasses(sys = 'usda')
fragmentClasses(sys = 'USDA', flat = TRUE)

fragmentClasses(sys = 'international')

fragmentClasses(sys = 'unified')

fragmentClasses(sys = 'aashto')
fragmentClasses(sys = 'aashto', rounded = TRUE)

fragmentClasses(sys = 'mod.wentworth')

Sieve the Coarse Fraction of Soil

Description

Sieve applies thresholds to a numeric vector of fragment diameter values, returning fragment size classes. Particle diameter thresholds are evaluated as d < threshold.

Usage

fragmentSieve(
  diameter,
  sieves = NULL,
  ordered = FALSE,
  prefix = "",
  new_names = NULL,
  ...
)

Arguments

diameter

numeric. Vector of diameters of coarse fragments to "sieve". Default sieves are specified in millimeters.

sieves

leave as NULL to use fragment class labels and diameters defined by fragmentClasses(), or a named vector of fragment diameters. See examples.

ordered

logical. Return as an ordered factor.

prefix

character. Add a prefix to result names? Default: "" adds no prefix. For example "para" might be used for size classes of pararock fragments.

new_names

Optional: apply new labels to result classes. Should match length of sieves.

...

additional arguments to fragmentClasses(), such as sys, flat, and rounded, see examples.

Value

character. Size class labels based on names of sieves, new_names, and prefix (if specified).

References

Soil Science Division Staff. 2017. Soil survey manual. C. Ditzler, K. Scheffe, and H.C. Monger (eds.). USDA Handbook 18. Government Printing Office, Washington, D.C.

See Also

fragmentClasses()

Examples

# use a simplified version of the USDA system
# common within NRCS/SPSD and NCSS
fragmentSieve(c(30, 125, 180, 500, 1000))

# pararock fragments
fragmentSieve(c(30, 125, 180, 500, 1000), prefix = 'para')

# result as an ordered factor
fragmentSieve(c(30, 125, 180, 500, 1000), ordered = TRUE)

# USDA system, flat size classes
fragmentSieve(c(30, 125, 180, 500, 1000), flat = TRUE)

# alternative classification systems
fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'usda')
fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'international')
fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'unified')
fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'aashto')
fragmentSieve(c(30, 125, 180, 500, 1000), sys = 'mod.wentworth')

# custom fragment labels / diameter
fragmentSieve(
  c(30, 125, 180, 500, 1000),
  sieves = c(clumps = 50, chunks = 300, blocks = 100000)
)

# unnamed sieves, generic labels used
fragmentSieve(c(10, 50), sieves = c(30, 70))

fragmentSieve(c(10, 50), sieves = c(30, 70), ordered = TRUE)

Generalize Horizon Names

Description

Generalize a vector of horizon names, based on new classes, and REGEX patterns. Or create a new column ghl in a SoilProfileCollection (requires a horizon designation name to be defined for the collection, see details)

Usage

generalize.hz(
  x,
  new,
  pattern,
  non.matching.code = "not-used",
  hzdepm = NULL,
  ordered = !missing(hzdepm),
  ...
)

## S4 method for signature 'character'
generalizeHz(
  x,
  new,
  pattern,
  non.matching.code = "not-used",
  hzdepm = NULL,
  ordered = !missing(hzdepm),
  ...
)

## S4 method for signature 'SoilProfileCollection'
generalizeHz(
  x,
  new,
  pattern,
  non.matching.code = "not-used",
  hzdepm = NULL,
  ordered = !missing(hzdepm),
  ghl = "genhz",
  ...
)

Arguments

x

character vector of horizon names or a SoilProfileCollection object

new

character vector of generalized horizon labels (GHL)

pattern

character vector of REGEX patterns, same length as new

non.matching.code

character, label used for any horizon not matched by pattern

hzdepm

numeric vector of horizon mid-points; NA values in hzdepm will result in non.matching.code (or NA if not defined) in result

ordered

logical, TRUE when hzdepm argument is specified

...

additional arguments passed to grep() such as perl = TRUE for advanced REGEX

ghl

Generalized Horizon Designation column name (to be created/updated when x is a SoilProfileCollection)

Details

When x is a SoilProfileCollection the ghl column will be updated with the factor results. This requires that the "horizon designation name" metadata be defined for the collection to set the column for input designations.

Value

factor (possibly an ordered factor) of the same length as x (if character) or as number of horizons in x (if SoilProfileCollection)

Author(s)

D.E. Beaudette

References

Beaudette, D.E., Roudier, P., Skovlin, J. (2016). Probabilistic Representation of Genetic Soil Horizons. In: Hartemink, A., Minasny, B. (eds) Digital Soil Morphometrics. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-28295-4_18

See Also

hzdesgnname()

Examples

data(sp1)

# check original distribution of hz designations
table(sp1$name)

# generalized horizon labels
# character vector input
sp1$genhz <- generalizeHz(
  sp1$name,
  new = c('O','A','B','C','R'),
  pattern = c('O', '^A','^B','C','R'),
  ordered = TRUE
)

# see how we did / what we missed
table(sp1$genhz, sp1$name)


## a more advanced example, requries `perl = TRUE`
# example data
x <- c('A', 'AC', 'Bt1', '^AC', 'C', 'BC', 'CB')

# new labels
n <- c('A', '^AC', 'C')

# patterns:
# "A anywhere in the name"
# "literal '^A' anywhere in the name"
# "C anywhere in name, but without preceding A"
p <- c('A', '^A', '(?<!A)C')

# note additional argument
res <- generalizeHz(
  x, 
  new = n, 
  pattern = p, 
  perl = TRUE
)

# double-check: OK
table(res, x)

## apply to a SoilProfileCollection
data(sp1)
depths(sp1) <- id ~ top + bottom

# must set horizon designation metadata
hzdesgnname(sp1) <- 'name'

# result is a SoilProfileCollection
x <- generalizeHz(
  sp1,
  new = c('O','A','B','C','R'),
  pattern = c('O', '^A','^B','C','R'),
  ordered = TRUE
)

# GHL stored in 'genhz' column
x$genhz

# GHL metadata is set
GHL(x)

Convert cross-tabulation to adjacency matrix.

Description

Convert a cross-tabulation of e.g. original horizon designations vs. generalized horizon labels to adjacency matrix form.

Usage

genhzTableToAdjMat(tab)

Arguments

tab

table, cross-tabulation of original and generalized horizon labels e.g. table(original, genhz)

Value

matrix of numeric values

Author(s)

D.E. Beaudette


Generate Labels for Slabs

Description

This method is used by slab() for generating labels that assign IDs to layers in a SoilProfileCollection

Usage

genSlabLabels(
  slab.structure = 1,
  max.d = NULL,
  n.profiles = NULL,
  spc = NULL,
  diced = NULL,
  ...
)

Arguments

slab.structure

A user-defined slab thickness (defined by an integer), or user-defined structure (numeric vector). See details for slab().

max.d

Maximum depth

n.profiles

Number of profiles

spc

Optional: A SoilProfileCollection

diced

Optional: The dice()-ed horizon-level data.frame corresponding to spc

...

Additional arguments passed to dice() when spc is specified.

Details

The new routine used in aqp 2.0 requires that, at a minimum, the spc and slab.structure arguments be specified.

Value

factor. slab IDs, labels are the segment top and bottom depth separated by "-"

See Also

slab()


Compute Pair-wise Distances of Soil Properties over Depth

Description

Computes pair-wise distance matrix to determine where an attribute increases within a specified vertical distance threshold.

get.increase.depths performs the conversion of the square matrix output of get.increase.matrix back to horizon top depth for where criteria were met.

Usage

get.increase.matrix(p, attr, threshold.fun, vertical.distance)

get.increase.depths(p, attr, threshold.fun, vertical.distance)

Arguments

p

a SoilProfileCollection, containing a single profile

attr

horizon attribute name to get the "increase" of

threshold.fun

a function that returns the threshold (as a function of attr); may return a constant single value

vertical.distance

the vertical distance (determined from difference SPC top depth variable) within which increase must be met

Details

Uses matrix outer product to determine all pair-wise differences in attr for the horizons of p. Supplies attr to threshold.fun to determine the minimum value criterion to return TRUE in output matrix for an "increase". Also, computes all pair-wise distances in depth dimension to determine whether the vertical distance criteria have been met simultaneously with attr increase.

This function assumes that the threshold.fun supplied by the user returns either a constant or a vector of equal length to its input.

Note that the threshold.fun result is allowed to contain NA, but that will result in no output for affected cells.

get.increase.depths() performs the conversion of the square matrix output of get.increase.matrix back to horizon top depth for where criteria were met.

Note that the threshold.fun result is allowed to contain NA, but that will result in no output for affected cells.

Value

Returns a square logical matrix reflecting where the increase criteria were met.

get.increase.depths converts to horizon top depth by using above matrix output to determine depths where increase is met.

Returns a numeric vector of depths where the increase requirement is met. For the argillic, the first is the one of interest.

get.increase.depths() converts to horizon top depth by using above matrix output to determine depths where increase is met.

Author(s)

Andrew Gene Brown

See Also

getArgillicBounds(), crit.clay.argillic()

getArgillicBounds() crit.clay.argillic()

Examples

data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

p <- sp1[1]
attr <- 'prop' # clay contents
foo <- get.increase.matrix(p, threshold.fun = crit.clay.argillic,
                           attr = attr, vertical.distance = 30)
foo


data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

p <- sp1[1]
attr <- 'prop' # clay contents
foo <- get.increase.depths(p, threshold.fun = crit.clay.argillic,
                           attr = attr, vertical.distance = 30)
foo

Determine ML Horizon Boundaries

Description

This function accepts input from slab() (a data.frame) along with a vector of horizon names, and returns a data.frame of the most likely horizon boundaries.

This function expects that x is a data.frame generated by slab(). If x was not generated by slab(), then o.names is required.

Usage

get.ml.hz(x, o.names = attr(x, which = "original.levels"))

Arguments

x

data.frame, output from slab()

o.names

an optional character vector of horizon designations that will be used in the final table

Value

A data.frame with the following columns:

  • hz: horizon names

  • top: horizon top depth

  • bottom: horizon bottom depth

  • confidence: integrated probability over thickness of each ML horizon, rounded to the nearest integer

  • pseudo.brier: A "pseudo"" Brier Score for a multi-class prediction, where the most-likely horizon label is treated as the "correct" outcome. Details on the calculation for traditional Brier Scores here: https://en.wikipedia.org/wiki/Brier_score. Lower values suggest better agreement between ML horizon label and class-wise probabilities.

  • mean.H: mean Shannon entropy (bits), derived from probabilities within each most-likely horizon. Larger values suggest more confusion within each ML.

Author(s)

D.E. Beaudette

References

Beaudette, D. E., Roudier, P., & Skovlin, J. (2016). Probabilistic representation of genetic soil horizons. Digital soil morphometrics, 281-293.

See Also

slab()

Examples

# init SPC
data(sp1)
depths(sp1) <- id ~ top + bottom

# set horizon designation metadata
hzdesgnname(sp1) <- 'name'

# generalize horizon designations from character vector
# result is an ordered factor
sp1$genhz <- generalizeHz(
  sp1$name,
  new = c('O','A','B','C'),
  pat = c('O', '^A','^B','C'),
  ordered = TRUE
)

# compute slice-wise GHL probability
# so that it sums to contributing fraction
# from 0-150cm
a <- slab(sp1, fm = ~ genhz, cpm = 1, slab.structure = 0:150)

# note original GHL names are set by slab()
attr(a, 'original.levels')

# generate table of ML horizonation
get.ml.hz(a)

Estimate upper and lower boundary of argillic diagnostic subsurface horizon

Description

getArgillicBounds estimates the upper and lower boundary of argillic diagnostic subsurface horizon for a profile in a single-profile SoilProfileCollection object (p).

The upper boundary is where the clay increase threshold is met. The function uses crit.clay.argillic as the threshold function for determining whether a clay increase occurs and get.increase.matrix to determine whether the increase is met, whether vertical distance of increase is sufficiently small, and in which horizon.

Usage

getArgillicBounds(
  p,
  hzdesgn = hzdesgnname(p, required = TRUE),
  clay.attr = hzmetaname(p, "clay", required = TRUE),
  texcl.attr = hztexclname(p, required = TRUE),
  require_t = TRUE,
  bottom.pattern = "Cr|R|Cd",
  lower.grad.pattern = "^[2-9]*B*CB*[^rtd]*[1-9]*$",
  sandy.texture.pattern = "-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$",
  vertical.distance = 30,
  simplify = TRUE,
  verbose = FALSE
)

Arguments

p

A SoilProfileCollection

hzdesgn

the name of the column/attribute containing the horizon designation; default="hzname"

clay.attr

the name of the column/attribute containing the clay content; default="clay"

texcl.attr

the name of the column/attribute containing the textural class (used for finding sandy horizons); default="texcl"

require_t

require a "t" subscript for positive identification of upper and lower bound of argillic? default: TRUE

bottom.pattern

regular expression passed to estimateSoilDepth to match the lower boundary of the soil. default is "Cr|R|Cd" which approximately matches paralithic, lithic and densic contacts.

lower.grad.pattern

this is a pattern for adjusting the bottom depth of the argillic horizon upwards from the bottom depth of the soil. The absence of illuviation is used as a final control on horizon pattern matching.

sandy.texture.pattern

this is a pattern for matching sandy textural classes: ⁠-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$⁠

vertical.distance

Vertical distance in which clay increase must be met. Default 30 cm

simplify

Return a length 2 vector with upper and lower boundary when p has length 1? Default TRUE.

verbose

Print out information about 't' subscripts, sandy textures, plow layers and lower gradational horizons?

Details

The lower boundary is first approximated as the depth to a lithic/paralithic/densic contact, or some other horizon matchable by a custom regular expression pattern. Subsequently, that boundary is extended upwards to the end of "evidence of illuviation."

The depth to contact is estimated using 'bottom.pattern' "Cr|R|Cd" by default. It matches anything containing Cr, R or Cd.

The lower gradational horizon regular expression ‘lower.grad.pattern' default is ⁠^[2-9]*B*CB*[^rtd]*[1-9]*$}⁠. It matches anything that starts with a lithologic discontinuity (or none) and a C master horizon designation. May contain B as second horizon designation in transitional horizon. May not contain 'r' or 't' subscript.

The minimum thickness of the argillic horizon is dependent on whether all subhorizons are "sandy" or not. The sandy.texture.pattern default ⁠-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$⁠ captures USDA textural class fine earth fractions that meet "sandy" particle size class criteria.

There also is an option ‘require_t' to omit the requirement for evidence of eluviation in form of 't' subscript in 'hzdesgn'. Even if "t" subscript is not required for positive identification, the presence of lower gradational C horizons lacking 't' will still be used to modify the lower boundary upward from a detected contact, if needed. If this behavior is not desired, just set 'lower.grad.pattern' to something that will not match any horizons in your data.

Value

Returns a numeric vector; first value is top depth, second value is bottom depth. If as.list is TRUE, returns a list with top depth named "ubound" and bottom depth named "lbound". If p has more than one profile or if simplify = FALSE the result is a data.frame containing profile ID, upper and lower boundary columns.

Author(s)

Andrew G. Brown

Examples

data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

# set required metadata
hzdesgnname(sp1) <- 'name'
hztexclname(sp1) <- 'texture'
hzmetaname(sp1, 'clay') <- 'prop'

x <- getArgillicBounds(sp1)
x

Find all intervals that are potentially part of a Cambic horizon

Description

Find all intervals that are potentially part of a Cambic horizon excluding those that are part of an argillic horizon (defined either by depth interval or getArgillicBounds()).

There may be multiple cambic horizons (indexes) in a profile. Each cambic index has a top and bottom depth associated: cambic_top and cambic_bottom. This result is designed to be used for single profiles, or with profileApply(..., frameify = TRUE)

Usage

getCambicBounds(
  p,
  hzdesgn = hzdesgnname(p, required = TRUE),
  texcl.attr = hztexclname(p, required = TRUE),
  clay.attr = hzmetaname(p, "clay", required = TRUE),
  argi_bounds = NULL,
  d_value = "d_value",
  m_value = "m_value",
  m_chroma = "m_chroma",
  sandy.texture.pattern = "-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$",
  ...
)

Arguments

p

A single-profile SoilProfileCollection

hzdesgn

Column name containing horizon designations.

texcl.attr

Arguments to getArgillicBounds()

clay.attr

Arguments to getArgillicBounds()

argi_bounds

Optional: numeric vector of length 2 with top and bottom of argillic; (Default: NULL)

d_value

Column name containing dry value. Default: d_value

m_value

Column name containing moist value. Default: m_value

m_chroma

Column name containing moist chroma Default: m_chroma

sandy.texture.pattern

this is a pattern for matching sandy textural classes: ⁠-S$|^S$|COS$|L[^V]FS$|[^L]VFS$|LS$|LFS$⁠

...

Arguments to getArgillicBounds()

Value

A data.frame containing profile, cambic indexes, along with top and bottom depths.

Author(s)

Andrew G. Brown

Examples

# construct a fake profile
spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxerepts",
                  hzname   = c("A","AB","Bw","BC","R"),
                  hzdept   = c(0,  20, 32, 42,  49),
                  hzdepb   = c(20, 32, 42, 49, 200),
                  clay     = c(19, 22, 22, 21,  NA),
                  texcl    = c("l","l","l", "l","br"),
                  d_value  = c(5,   5,  5,  6,  NA),
                  m_value  = c(2.5, 3,  3,  4,  NA),
                  m_chroma = c(2,   3,  4,  4,  NA))

# promote to SoilProfileCollection
depths(spc) <- id ~ hzdept + hzdepb

# set required metadata
hzdesgnname(spc) <- 'hzname'
hztexclname(spc) <- 'texcl'
hzmetaname(spc, 'clay') <- 'clay'

# print results in table
getCambicBounds(spc)

Get Approximate Munsell Chip

Description

Non-standard Munsell notation ('7.9YR 2.7/2.0') can be matched (nearest-neighbor, no interpolation) to the closest color within the munsell sRGB/CIELAB look-up table via getClosestMunsellChip(). A more accurate estimate of sRGB values from non-standard notation can be achieved with the munsellinterpol package. For example, conversion from Munsell to CIELAB, assuming a D65 illuminant via: MunsellToLab('0.1Y 3.3/4.4', white='D65', adapt='Bradford').

Usage

getClosestMunsellChip(munsellColor, convertColors = TRUE, ...)

Arguments

munsellColor

character vector of strings containing Munsell notation of color, e.g. '10YR 4/3', not NA-safe

convertColors

logical, should parsed Munsell colors be converted into sRGB values

...

further arguments to munsell2rgb

Value

a data.frame when convertColors=TRUE, otherwise character vector

Examples

# convert a non-standard color to closest "chip" in `munsell` look-up table
getClosestMunsellChip('7.9YR 2.7/2.0', convertColors = FALSE)

# convert directly to R color
getClosestMunsellChip('7.9YR 2.7/2.0')

# special case for 2.5 value -> no rounding, we have these records in the conversion LUT
getClosestMunsellChip('7.5YR 2.5/2', convertColors = FALSE)


getClosestMunsellChip('7.5YR 6.8/4.4', convertColors = FALSE)

Get IDs of Deepest Horizons by Profile

Description

Return horizon IDs of the deepest horizon within each profile of a SoilProfileCollection. IDs are returned in the same order as profile_id(x). Horizon top depths are used because there are cases where bottom depths may be missing.

Usage

getLastHorizonID(x)

Arguments

x

a SoilProfileCollection


Generate Soil Depth Class Matrix

Description

Generate a boolean matrix of soil depth classes, actual soil depth class, and estimate of soil depth from a SoilProfileCollection object. Soil depths are estimated using pattern matching applied to horizon designations, by estimateSoilDepth(). The default REGEX pattern (p = 'Cr|R|Cd') will match most "contacts" described using the USDA / Soil Taxonomy horizon designation conventions.

Usage

getSoilDepthClass(
  f,
  depth.classes = c(very.shallow = 25, shallow = 50, mod.deep = 100, deep = 150,
    very.deep = 10000),
  ...
)

Arguments

f

a SoilProfileCollection object

depth.classes

a named vector of classes and depth breaks

...

arguments passed to estimateSoilDepth

Value

a data.frame containing soil depth and depth class for each profile, see examples

Author(s)

D.E. Beaudette and J.M. Skovlin

See Also

estimateSoilDepth

Examples

data(sp1)
depths(sp1) <- id ~ top + bottom

# generate depth-class matrix
sdc <- getSoilDepthClass(sp1, name = 'name')

# inspect
head(sdc)

# join back into sp1 as site-level data
site(sp1) <- sdc

## Not run: 
# sample data
data(gopheridge, package='soilDB')

getSoilDepthClass(gopheridge, name = 'hzname')

## End(Not run)

Determine thickness of horizons (continuous from surface) matching a pattern

Description

Find the thickness of horizon designations, or any other character patterns, that are continuous from the soil surface (depth = 0 or shallowest depth in profile).

Usage

getSurfaceHorizonDepth(
  p,
  pattern,
  hzdesgn = hzdesgnname(p, required = TRUE),
  simplify = TRUE
)

getMineralSoilSurfaceDepth(
  p,
  hzdesgn = hzdesgnname(p, required = TRUE),
  pattern = "O",
  simplify = TRUE
)

getPlowLayerDepth(
  p,
  hzdesgn = hzdesgnname(p, required = TRUE),
  pattern = "^Ap[^b]*",
  simplify = TRUE
)

Arguments

p

a SoilProfileCollection

pattern

a regular expression pattern to match for all horizons to be considered part of the "surface".

hzdesgn

column name containing horizon designation. Default: hzdesgnname(p, required = TRUE).

simplify

logical. Return single profile results as vector (default: TRUE) or data.frame (FALSE)

Details

The horizon designation to match is specified with the regular expression pattern 'pattern'. All horizons matching that pattern, that are continuous from the soil surface, count towards the depth / thickness value that is ultimately returned. For instance: horizon designations: A1-A2-A3-C-Ab , would return A3 bottom depth given pattern = "^A[1-9]*$".

getSurfaceHorizonDepth is used by getPlowLayerDepth for matching Ap horizons; and, it is used by getMineralSoilSurfaceDepth to find the thickness of O horizons in lieu of lab data.

Value

a numeric value corresponding to the bottom depth of the last horizon matching 'pattern' that is contiguous with other matching horizons up to the soil surface. If length(p) > 1 then a data.frame containing profile ID, horizon ID, top or bottom depths, horizon designation and pattern.

Author(s)

Andrew G. Brown

Examples

library(aqp)
data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

p <- sp1[1]
q <- sp1[2]

# look at horizon designations in p and q
p$name
q$name

# thickness of all surface horizons containing A
getSurfaceHorizonDepth(p, pattern = 'A', hzdesgn = 'name')

# thickness of all surface horizons that start with A
getSurfaceHorizonDepth(p, pattern = '^A', hzdesgn = 'name')

# thickness of all surface horizons that start with A, and the A is not followed by B
getSurfaceHorizonDepth(p, pattern = '^A[^B]*', hzdesgn = 'name')

# thickness of all surface horizons that start with A
#  followed by a number from _2_ to 9 (returns ZERO)
getSurfaceHorizonDepth(p, pattern = '^A[2-9]*', hzdesgn = 'name')

# getPlowLayerDepth matches first two horizons in fake Ap horizon data with "buried Ap"
p$aphorizons <- c("Ap1","Ap2","AB", rep('C', nrow(p) - 4), "Apb")
getPlowLayerDepth(p, hzdesgn = 'aphorizons')

# getMineralSoilSurfaceDepthmatches first 3 horizons in fake O horizon data
p$ohorizons <- c("Oi1","Oi2","Oe", rep('C', nrow(p) - 4), "2C")
getMineralSoilSurfaceDepth(p, hzdesgn='ohorizons')

# matches first Oi horizon with original horizon designations of pedon 2
getMineralSoilSurfaceDepth(q, hzdesgn='name')

Get or Set Generalized Horizon Label (GHL) Column Name

Description

GHL(): Get column name containing generalized horizon labels

⁠GHL<-⁠: Set generalized horizon label column name

Usage

## S4 method for signature 'SoilProfileCollection'
GHL(object, required = FALSE)

## S4 replacement method for signature 'SoilProfileCollection'
GHL(object, required = FALSE) <- value

Arguments

object

a SoilProfileCollection

required

logical, is this attribute required? If it is, set to TRUE to trigger error on invalid value.

value

character, name of column containing generalized horizon labels

Details

Store the column name containing generalized horizon labels in the metadata slot of the SoilProfileCollection.

Examples

data(sp1)

# promote to SPC
depths(sp1) <- id ~ top + bottom

# set horizon designation column
GHL(sp1) <- "name"

# get horizon designation column
GHL(sp1)

Subset soil horizon data using a depth or depth interval

Description

Make a "clod" of horizons from a SoilProfileCollection given a point or a depth interval to intersect. The interval ⁠[z1,z2]⁠ may be profile-specific (equal in length to p), or may be recycled over all profiles (if boundaries are length 1). For "point" intersection, z2 may be left as the default value NULL.

trunc() is a wrapper method (using S4 generic) for glom() where truncate=TRUE

Usage

## S4 method for signature 'SoilProfileCollection'
glom(
  p,
  z1,
  z2 = NULL,
  ids = FALSE,
  df = FALSE,
  truncate = FALSE,
  invert = FALSE,
  fill = FALSE,
  modality = "all",
  drop = !fill,
  ...
)

## S4 method for signature 'SoilProfileCollection'
trunc(x, z1, z2, ...)

Arguments

p

A SoilProfileCollection

z1

numeric vector of top depth to intersect horizon (required). Can be an expression involving siteNames(p) or quoted column name. Should evaluate to numeric length 1 or length equal to length(p)

z2

numeric vector bottom depth of intersection interval (optional). Can also be an expression involving siteNames(p) or quoted column name. Should evaluate to numeric length 1, length equal to length(p) or NULL. Default: NULL is "point" intersection

ids

return only horizon IDs? default: FALSE

df

return a data.frame, by intersection with horizons(p)? default: FALSE

truncate

truncate horizon top and bottom depths to z1 and z2? default: FALSE

invert

get horizons outside the interval ⁠[z1,z2]⁠? default: FALSE

fill

keep sites and preserve order for profiles that do not have horizons in interval by filling with a single horizon with NA top and bottom depth. default: FALSE

modality

default: "all" return all horizons; or modality = "thickest") to return the thickest horizon in interval. If multiple horizons have equal thickness, the first (shallowest) is returned.

drop

Inverted alias of fill for consistency with other methods. When drop=FALSE, filling occurs.

...

trunc(): additional arguments passed to glom()

x

A SoilProfileCollection

Details

"To glom" is "to steal" or to "become stuck or attached to". The word is related to the compound "glomalin", which is a glycoprotein produced by mycorrhizal fungi in soil.

The full depth range of horizons included within the interval are returned (a "ragged" SoilProfileCollection) unless the truncate argument is set as TRUE. Horizon intersection is based on unique ID hzidname(spc) and depth range of interest. Profiles that lack data in the range of interest will be dropped from the resulting SoilProfileCollection.

If inverting results with invert, it is possible that thick horizons (whose boundaries span wider than the specified interval) will be split into two horizons, where previously they were one. This may make the results from ids = TRUE different from what you expect, as they will be based on a profile with an "extra" horizon and re-calculated unique horizon ID (hzidname(spc)) "hzID".

Value

a SoilProfileCollection, data.frame, or a vector of horizon IDs. NULL if no result.

Author(s)

Andrew G. Brown

See Also

glomApply trunc

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

data(sp1, package = 'aqp')
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

p <- glom(sp1, 25, 150)

# 28 horizons
nrow(p) 

# inspect graphically
par(mar = c(1,1,3,1))
plot(p, color = "prop", max.depth = 200)
abline(h = c(25, 100), lty = 2)

## glom(..., truncate = TRUE)

p2 <- glom(sp1, 25, 150, truncate = TRUE)

# 28 horizons
nrow(p2) 

# inspect graphically
par(mar = c(1,1,3,1))
plot(p2, color = "prop", max.depth = 200)
abline(h = c(25, 100), lty = 2)

## glom(..., truncate = TRUE, invert = TRUE)

p3 <- glom(sp1, 25, 150, truncate = TRUE, invert = TRUE)

# 45 horizons
nrow(p3) 

# inspect graphically
par(mar = c(1,1,3,1))
plot(p3, color = "prop", max.depth = 200)
abline(h = c(25, 100), lty = 2)

## profile-specific interval, using expressions evaluated within sp1@site

# calculate some new site-level variables containing target interval
sp1$glom_top <- (1:9) * 10
sp1$glom_bottom <- 10 + sp1$glom_top

# glom evaluates non-standard expressions using siteNames(sp1) column names
p4 <- glom(sp1, glom_top / 2, glom_bottom * 1.2, truncate = TRUE)

# inspect graphically
par(mar = c(1,1,3,1))
plot(p4, color = "prop", max.depth = 200)


# load sample data
data("sp3")

# promote to SPC
depths(sp3) <- id ~ top + bottom

### TRUNCATE all profiles in sp3 to [0,25]

# set up plot parameters
par(mfrow=c(2,1), mar=c(0,0,0,0))

# full profiles
plot(sp3)

# trunc'd profiles
plot(trunc(sp3, 0, 25))

Subset an SPC by applying glom to each profile

Description

glomApply() is a function used for subsetting SoilProfileCollection objects by depth. It is a wrapper around glom which is intended to subset single-profile SPCs based on depth intervals/intersection.

glomApply works by accepting a function .fun as argument. This function is used on each profile to process a multi-profile SPC for input to glom (via profileApply). For each profile, .fun returns a 2-length numeric vector of top and bottom boundaries glom arguments: z1, z2.

glomApply provides the option to generate profile-specific glom depths for a large SPC and handles iteration and rebuilding of a subset SPC object. Optional arguments include: truncate to cut the boundaries to specified [z1, z2]; invert to the portion outside [z1, z2], modality to either "all" horizons or "thickest" horizon in the glom interval. ... are various expressions you can run on the individual profiles using NSE, similar to mutate.

Usage

glomApply(
  object,
  .fun = NULL,
  truncate = FALSE,
  invert = FALSE,
  modality = "all",
  ...,
  chunk.size = 100
)

Arguments

object

A SoilProfileCollection

.fun

A function that returns vector with top and bottom depth (z1 and z2 arguments to glom) for a single profile p (as passed by profileApply)

truncate

Truncate horizon top and bottom depths to [z1, z2]

invert

Truncate horizon top and bottom depths to [z1, z2] and then invert result?

modality

Aggregation method for glom result. Default "all": return all horizons; "thickest": return (shallowest) thickest horizon

...

A set of comma-delimited R expressions that resolve to a transformation to be applied to a single profile e.g glomApply(hzdept = max(hzdept) - hzdept) like aqp::mutate

chunk.size

Chunk size parameter for profileApply

Value

A SoilProfileCollection.

Author(s)

Andrew G. Brown.

See Also

glom trunc

glom glomApply

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

data(sp3)
depths(sp3) <- id ~ top + bottom

# init horizon designation column in metadata, used by estimateSoilDepth
hzdesgnname(sp3) <- 'name'

# constant depths, whole horizon returns by default
plot(glomApply(sp3, function(p) c(25,100)))

# constant depths, truncated
#(see aqp::trunc for helper function)
plot(glomApply(sp3, function(p) c(25,30), truncate = TRUE))

# constant depths, inverted
plot(glomApply(sp3, function(p) c(25,100), invert = TRUE))

# constant depths, inverted + truncated (same as above)
plot(glomApply(sp3, function(p) c(25,30), invert = TRUE, truncate=TRUE))

# random boundaries in each profile
plot(glomApply(sp3, function(p) round(sort(runif(2, 0, max(sp3))))))

# random boundaries in each profile (truncated)
plot(glomApply(sp3, function(p) round(sort(runif(2, 0, max(sp3)))), truncate = TRUE))

# calculate some boundaries as site level attribtes
sp3$glom_top <- profileApply(sp3, getMineralSoilSurfaceDepth)
sp3$glom_bottom <- profileApply(sp3, estimateSoilDepth)

# use site level attributes for glom intervals for each profile
plot(glomApply(sp3, function(p) return(c(p$glom_top, p$glom_bottom))))

Subset SPC with pattern-matching for text-based attributes

Description

grepSPC() is a shorthand function for subsetting SoilProfileCollection objects. For example, by filter(grepl(spc, ...)) or filter(stringr::str_detect(spc, ...)). It provides pattern matching for a single text-based site or horizon level attribute.

Usage

grepSPC(object, attr, pattern, ...)

Arguments

object

A SoilProfileCollection

attr

A character vector (column in object) for matching patterns against.

pattern

REGEX pattern to match in attr

...

Additional arguments are passed to grep()

Value

A SoilProfileCollection.

Author(s)

Andrew G. Brown.


Grouped Soil Profile Plot

Description

Plot a collection of soil profiles, sorted by group.

The left-right ordering of groups can be adjusted by converting groups into a factor and explicitly setting factor levels. Alpha-numeric ordering is used for all other types.

Usage

groupedProfilePlot(
  x,
  groups,
  group.name.offset = -5,
  group.name.cex = 0.75,
  group.line.col = "RoyalBlue",
  group.line.lwd = 2,
  group.line.lty = 2,
  break.style = c("line", "arrow", "both"),
  break.offset = 0.5,
  arrow.offset = group.name.offset + 5,
  arrow.length = 0.1,
  ...
)

Arguments

x

a SoilProfileCollection object

groups

the name of a site-level attribute that defines groups, factor levels will influence plotting order

group.name.offset

vertical offset for group names, single numeric value or vector of offsets

group.name.cex

font size for group names

group.line.col

color for line that splits groups

group.line.lwd

width of line that splits groups

group.line.lty

style of line that splits groups

break.style

style of group boundaries: "line", "arrow", "both"

break.offset

horizontal offset used to place vertical breaks and/or arrows, shifted slightly to the right of default when hz.depths=TRUE is passed to plotSPC()

arrow.offset

vertical offset for "arrow" style boundaries, single numeric value or vector of offsets

arrow.length

value passed to arrows to define arrow head size

...

further arguments to plotSPC

Author(s)

D.E. Beaudette

See Also

plotSPC

Examples

# sample data
data(sp1)
# convert colors from Munsell to hex-encoded RGB
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))

# promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

# add a groups
sp1$group.2 <- sprintf("%s-%s", rev(LETTERS[1:3]), sp1$group)

# convert fake groupt to factor with new levels
sp1$group.3 <- factor(sp1$group.2, levels=c('C-2', 'B-2', 'A-2', 'C-1', 'B-1', 'A-1'))

# plot profiles, sorted and annotated by 'group' (integers)
par(mar=c(1,1,1,1))
groupedProfilePlot(sp1, groups='group', max.depth=150, group.name.offset = -5, id.style='side')

# plot profiles, sorted and annotated by 'group.2' (characters)
par(mar=c(1,1,1,1))
groupedProfilePlot(sp1, groups='group.2', max.depth=150, group.name.offset = -5, id.style='side')

# plot profiles, sorted and annotated by 'group.3' (characters)
par(mar=c(1,1,1,1))
groupedProfilePlot(sp1, groups='group.3', max.depth=150, group.name.offset = -5, id.style='side')


# make fake site-level attribute and adjust levels
sp1$new.group <- sample(letters[1:3], size=length(sp1), replace=TRUE)

# tabulate pedons / group
tab <- table(sp1$new.group)

# sort large -> small
tab <- sort(tab, decreasing = TRUE)

# set levels based on sorted tabulation
# assign custom labels
sp1$new.group <- factor(sp1$new.group, levels=names(tab),
labels=paste0(names(tab), ' (', tab, ')'))

groupedProfilePlot(sp1, groups='new.group', max.depth=150,
group.name.offset = -10, id.style='side')

# offsets can be set using a vector of values, recycled as needed
groupedProfilePlot(sp1, groups='new.group', max.depth=150,
group.name.offset=c(-10, -5), id.style='side')

# annotate with arrows instead of vertical lines
groupedProfilePlot(sp1, groups='new.group', max.depth=150,
group.name.offset=c(-10, -12), break.style='arrow', arrow.offset=-3,
group.line.lty = 1, group.line.lwd = 1, id.style='side')


## Not run: 
# more complete example using data from soilDB package
data(loafercreek, package='soilDB')
par(mar=c(1,1,1,1))
# lines
groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5,
group.name.offset = -10)

# arrows
groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5,
group.name.offset = -10, break.style ='arrow', group.line.lty = 1,
group.line.lwd = 1)

# both
groupedProfilePlot(loafercreek, groups='hillslopeprof', group.name.cex = 0.5,
group.name.offset = -10, break.style ='both', group.line.lty = 1,
group.line.lwd = 1)

## End(Not run)

Store groupings within a profile collection.

Description

Store groupings within a profile collection.

Usage

groupSPC(object, ...)

Arguments

object

SoilProfileCollection.

...

One or more expressions evaluated within the context of object that resolve to vectors that can be coerced to factor "groups."


Guess Appropriate Ordering for Generalized Horizon Labels

Description

This function makes an (educated) guess at an appropriate set of levels for generalized horizon labels using the median of horizon depth mid-points.

Usage

guessGenHzLevels(x, hz = GHL(x, required = TRUE))

Arguments

x

a SoilProfileCollection object

hz

name of horizon-level attribute containing generalized horizon labels, see details

Details

This function is useful when groups of horizons have been generalized via some method other than generalize.hz. For example, it may be useful to generalize horizons using labels derived from slice depths. The default sorting of these labels will not follow a logical depth-wise sorting when converted to a factor. guessGenHzLevels does a good job of "guessing" the proper ordering of these labels based on median horizon depth mid-point.

Value

a list:

levels

a vector of levels sorted by median horizon depth mid-point

median.depths

a vector of median horizon mid-points

Author(s)

D.E. Beaudette

See Also

generalize.hz

Examples

# load some example data
data(sp1, package='aqp')

# upgrade to SoilProfileCollection
depths(sp1) <- id ~ top + bottom

# generalize horizon names
n <- c('O', 'A', 'B', 'C')
p <- c('O', 'A', 'B', 'C')
sp1$genhz <- generalize.hz(sp1$name, n, p)

# note: levels are in the order in which originally defined:
levels(sp1$genhz)

# generalize horizons by depth slice
s <- dice(sp1, c(5, 10, 15, 25, 50, 100, 150) ~ .)
s$slice <- paste0(s$top, ' cm')
# not a factor
levels(s$slice)

# the proper ordering of these new labels can be guessed from horizon depths
guessGenHzLevels(s, 'slice')

# convert to factor, and set proper order
s$slice <- factor(s$slice, levels=guessGenHzLevels(s, 'slice')$levels)

# that is better
levels(s$slice)

Guess Horizon Slot Column Names

Description

guessHzAttrName(): Guess the horizon column name where possible/preferred formative elements are known. There is a preference for records where more optional requirements are met to handle cases where there will be many matches. For example, working with soil data one might have "low, RV and high" total clay, as well as clay fractions. One could distinguish between these different measurements using standard formative elements for column names from the database of interest. Result is the first match in horizonNames(x) with the most required plus optional patterns matched.

e.g. guessHzAttrName(x, attr="clay", optional=c("total", "_r")) matches (claytotal_r == totalclay_r) over (clay_r == claytotal == totalclay) over clay.

guessHzDesgnName(): DEPRECATED This follows the historic convention used by aqp::plotSPC() looking for "hzname" or other column names containing the regular expression "name". If the pattern "name" is not found, the pattern "desgn" is searched as a fallback, as "hzdesgn" or "hz_desgn" are other common column naming schemes for horizon designation name.

guessHzTexClName(): DEPRECATED This function is used to provide a texture class attribute column name to functions. It will use regular expressions to match "texcl" which is typically the texture of the fine earth fraction, without modifiers or in-lieu textures. Alternately, it will match "texture" for cases where "texcl" is absent (e.g. in NASIS Component Horizon).

Usage

guessHzAttrName(x, attr, optional = NULL, verbose = TRUE, required = FALSE)

guessHzDesgnName(x, required = FALSE)

guessHzTexClName(x, required = FALSE)

Arguments

x

A SoilProfileCollection

attr

character. A regular expression containing required formative element of attribute name.

optional

character. Vector of regular expression(s) containing optional formative elements of attribute name.

verbose

logical. Produce message output about guesses? Default: TRUE

required

logical Default: FALSE. Is this attribute required? If it is, set to TRUE to trigger error on invalid value.

Value

Character containing horizon attribute column name. Result is the first match in horizonNames(x) with the most required plus optional patterns matched.

Author(s)

Andrew G. Brown

Examples

# a has the required attr pattern, but none of the optional
a <- data.frame(id = 1, top = c(0,10), bottom=c(10,40),
                clay=c(18,19))
depths(a) <- id ~ top + bottom

guessHzAttrName(a, attr="clay", optional=c("total", "_r"))

# b has requried attr pattern, and one of the opional patterns
#   notice that it also contains "clay" but preferentially matches more optional patterns
b <- data.frame(id = 1, top = c(0,10), bottom=c(10,40),
                clay=c(0.18,0.19), clay_r=c(18,19))
depths(b) <- id ~ top + bottom

guessHzAttrName(b, attr="clay", optional=c("total", "_r"))

# c has total and _r (both optional) on either side of clay
# having all of the optional patterns plus required is best evidence, and first
# column containing that combination will be returned
c <- data.frame(id = 1, top = c(0,10), bottom=c(10,40),
                totalclay_r=c(18,19), claytotal_r=c(0.18,0.19))
depths(c) <- id ~ top + bottom

guessHzAttrName(c, attr="clay", optional=c("total", "_r"))

Harden (1982) Melanization

Description

Calculate "melanization" component of "Profile Development Index" after Harden (1982) "A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California". Accepts vectorized inputs for value and reference value to produce vector output. A convenient use case would be to apply this on a profile-specific basis, where the value_ref has a single value, and value is a vector of length equal to the number of horizons within the upper 100 cm.

Usage

harden.melanization(value, value_ref)

Arguments

value

numeric vector containing Munsell values

value_ref

A numeric vector containing Munsell value(s) for reference material

Details

In Harden (1982), "melanization" is calculated relative to a reference parent material for all horizons within 100cm of the soil surface. In addition, several other non-color components are normalized relative to a maximum value and summed to obtain the overall Profile Development Index.

Value

A numeric vector reflecting horizon darkening relative to a reference (e.g. parent) material.

Author(s)

Andrew G. Brown

References

Harden, J.W. (1982) A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California. Geoderma. 28(1) 1-28. doi: 10.1016/0016-7061(82)90037-4

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

library(aqp)
data("jacobs2000", package="aqp")

# LEFT JOIN hue, value, chroma matrix color columns
horizons(jacobs2000) <- cbind(horizons(jacobs2000)[,c(idname(jacobs2000), hzidname(jacobs2000))],
                              parseMunsell(jacobs2000$matrix_color_munsell, convertColors = FALSE))

# calculate a mixed 150-200cm color ~"parent material"

jacobs2000$c_horizon_color <- profileApply(jacobs2000, function(p) {

  # and derive the parent material from the 150-200cm interval
  p150_200 <- glom(p, 150, 200, truncate = TRUE)
  p150_200$thickness <- p150_200$bottom - p150_200$top

  # mix colors
  clrs <- na.omit(horizons(p150_200)[,c('matrix_color_munsell','thickness')])
  mixMunsell(clrs$matrix_color_munsell, w = clrs$thickness)$munsell

})

# segment profile into 1cm slices (for proper depth weighting)
jacobs2000$melan <- profileApply(jacobs2000, function(p) {

  # sum the melanization index over the 0-100cm interval
  p0_100 <- hz_segment(p, 0:100)

  ccol <- parseMunsell(p$c_horizon_color, convertColors = FALSE)

  sum(harden.melanization(
    value = as.numeric(p0_100$value),
    value_ref = as.numeric(ccol$value)), na.rm = TRUE)

})

jacobs2000$melanorder <- order(jacobs2000$melan)

# Plot in order of increasing Melanization index

plotSPC(jacobs2000, 
        color = "matrix_color",
        label = "melan",
        plot.order = jacobs2000$melanorder,
        max.depth = 250
        )

segments(
  x0 = 0.5, 
  x1 = length(jacobs2000) + 0.5, 
  y0 = c(0,100,150,200), 
  y1 = c(0,100,150,200), 
  lty = 2
)

# Add [estimated] parent material color swatches
lapply(seq_along(jacobs2000$c_horizon_color), function(i) {
  rect(i - 0.15, 250, i + 0.15, 225,
       col = parseMunsell(jacobs2000$c_horizon_color[jacobs2000$melanorder[i]]))
})

Harden (1982) Rubification

Description

Calculate "rubification" component of "Profile Development Index" after Harden (1982) "A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California". Accepts vectorized inputs for hue and chroma to produce vector output.

In Harden (1982) "rubification" is calculated relative to a reference parent material. Several other non-color components are normalized relative to a maximum value and summed to obtain the overall Profile Development Index.

Usage

harden.rubification(hue, chroma, hue_ref, chroma_ref)

Arguments

hue

A character vector containing Munsell hues (e.g. "7.5YR")

chroma

A numeric vector containing Munsell chromas

hue_ref

A character vector containing Munsell hue(s) (e.g. "10YR") for reference material

chroma_ref

A numeric vector containing Munsell chroma(s) for reference material

Value

A numeric vector reflecting horizon redness increase relative to a reference (e.g. parent) material.

Author(s)

Andrew G. Brown

References

Harden, J.W. (1982) A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California. Geoderma. 28(1) 1-28. doi: 10.1016/0016-7061(82)90037-4

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

library(aqp)
data("jacobs2000", package="aqp")

# LEFT JOIN hue, value, chroma matrix color columns
horizons(jacobs2000) <- cbind(horizons(jacobs2000)[,c(idname(jacobs2000), hzidname(jacobs2000))],
                              parseMunsell(jacobs2000$matrix_color_munsell, convertColors = FALSE))

#' # calculate a mixed 150-200cm color ~"parent material"
jacobs2000$c_horizon_color <- profileApply(jacobs2000, function(p) {

  # and derive the parent material from the 150-200cm interval
  p150_200 <- glom(p, 150, 200, truncate = TRUE)
  p150_200$thickness <- p150_200$bottom - p150_200$top
  
  # subset colors and thickness
  clrs <- na.omit(horizons(p150_200)[,c('matrix_color_munsell','thickness')])
  
  # simulate a subtractive mixture using thickness as weight
  mixMunsell(
  clrs$matrix_color_munsell, 
  w = clrs$thickness, 
  mixingMethod = 'exact')$munsell
})

# segment profile into 1cm slices (for proper depth weighting)
jacobs2000$rubif <- profileApply(jacobs2000, function(p) {

  # sum the melanization index over the 0-100cm interval
  p0_100 <- hz_segment(p, 0:100)

  ccol <- parseMunsell(p$c_horizon_color, convertColors = FALSE)

  sum(harden.rubification(
    hue = p0_100$hue,
    chroma = as.numeric(p0_100$chroma),
    hue_ref = ccol$hue,
    chroma_ref = as.numeric(ccol$chroma)
  ), na.rm = TRUE)

})

jacobs2000$rubiforder <- order(jacobs2000$rubif)

# Plot in order of increasing Rubification index

plotSPC(jacobs2000,
color = "matrix_color",
label = "rubif",
plot.order = jacobs2000$rubiforder,
max.depth = 250
)

segments(
  x0 = 0.5, 
  x1 = length(jacobs2000) + 0.5, 
  y0 = c(0,100,150,200), 
  y1 = c(0,100,150,200), 
  lty = 2
)

# Add [estimated] parent material color swatches
trash <- sapply(seq_along(jacobs2000$c_horizon_color), function(i) {
  rect(i - 0.15, 250, i + 0.15, 225,
       col = parseMunsell(jacobs2000$c_horizon_color[jacobs2000$rubiforder[i]]))
})

Harmonize a property by profile-level denormalization for convenient visualization or analysis of ranges

Description

It is sometimes convenient to be able to "denormalize" to a SoilProfileCollection with fewer attributes but more profiles. This is helpful wherever calculations are made on a profile basis and ranges or repeated measures are depicted with multiple attributes per soil horizon.

harmonize is most commonly used for creating "comparison" soil profile sketches with plotSPC–where the thematic attribute is derived from multiple data sources or summary statistics (such as quantiles of a property for Low-RV-High). However, the method more generally applies wherever one wants to alias between multiple columns containing "similar" data as input to an algorithm.

Data are "harmonized" to a common attribute names specified by the names of list elements in x.names. Profiles are essentially duplicated. In order to satisfy uniqueness constraints of the SoilProfileCollection, the label from the sub-elements of x.names are used to disambiguate profiles. A new column in the site table is calculated to reflect these groupings and facilitate filtering. See examples below.

Usage

## S4 method for signature 'SoilProfileCollection'
harmonize(x, x.names, keep.cols = NULL, grp.name = "hgroup")

Arguments

x

A SoilProfileCollection.

x.names

a named list of character vectors specifying target names, profile ID suffixes and source attribute names for harmonization

keep.cols

a character vector of column names to keep unaltered from the horizon data

grp.name

a character vector with column name to store grouping variable in site table (default: "hgroup")

Details

If attributes reflecting the same or similar property within a soil layer have different names (e.g. socQ05, socQ50, socQ95) it is sometimes inconvenient to work with them as multiple attributes within the same profile. These similar attributes may need to be analyzed together, or in sequence by profile, displayed using the same name or using a common scale. It is also useful to be able to alias different data sources that have the same attributes with different names.

Each list element in x.names specifies a single "harmonization," which is comprised of one or more mappings from new to old. Each named "sub-element" of x.names specifies the name and attribute to use for updating the profile ID and site table of the duplicated profiles.

Value

A (redundant) SoilProfileCollection, with one profile for each set of harmonizations specified by x.names.

Author(s)

Andrew G. Brown

Examples

### single source "harmonization" of single-profile with range -> single attribute, multi-profile

# make some test data
spc <- combine(lapply(1:10, random_profile, SPC = TRUE))

# assume that p1, p2 and p3 are the low RV and high quantiles for a hypothetical property "foo"
h1 <- harmonize(spc, x.names = list(foo = c(q05 = "p1", q50 = "p2", q95 = "p3")))

# inspect result
plotSPC(h1, color = "foo")

# filter with calculated "harmonized group" to get just RV profiles
plotSPC(subset(h1, hgroup == "q50"), color="foo")

### single source, two properties at once; with common labels: "method1" "method2"

# assume that p1, p2 are measurements by two (!=) methods for a hypothetical property "foo"
#             p3, p4 are measurements by same two methods for a hypothetical property "bar"
h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"),
                                    bar = c(method1 = "p3", method2 = "p4")))
plotSPC(h3, color = "foo")
plotSPC(h3, color = "bar")
head(horizons(h3))

# a slight modification, "method 1" onlyused for "foo" and "method 3" for "bar"
h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"),
                                    bar = c(method2 = "p3", method3 = "p4")))
plotSPC(h3, color = "foo") # note the pattern of values missing for foo (*_method3)
plotSPC(h3, color = "bar") #  likewise for bar (*_method1)

#' the new labels need not match across harmonizations -- not sure how useful this is but it works
h3 <- harmonize(spc, x.names = list(foo = c(method1 = "p1", method2 = "p2"),
                                    bar = c(method3 = "p3", method4 = "p4")))
plotSPC(h3, color = "foo") # note the pattern of values missing for foo (*_method 3 + 4)
plotSPC(h3, color = "bar") #  likewise for bar (*_method 1 + 2)

### two-source harmonization

# make test data
spc1 <- combine(lapply(LETTERS[1:5], random_profile, SPC = TRUE))
spc2 <- combine(lapply(letters[1:5], random_profile, SPC = TRUE))

h4 <- combine(list(harmonize(spc1, list(foo = c(transect1 = "p4"))),   # foo is p4 in dataset 1
                      harmonize(spc2, list(foo = c(transect2 = "p2")))))  # foo is p2 in dataset 2

# same property with different name in two different datasets
plotSPC(h4, color = "foo")

### many source harmonization

# make test datasets (n=10); highly redundant IDs (1:3 repeated)
spcs <- lapply(1:10, function(x) pbindlist(lapply(1:3, random_profile, SPC = TRUE)))

# randomly varying column name for demo (in each dataset, foo could could be p1 thru p5)
rcolname <- paste0("p", round(runif(10, 0.5, 5.5)))

# iterate over data sources
bigspc <- combine(lapply(1:length(spcs), function(i) {

  # assume each data source has a unique name for the property "foo"
  xn <- rcolname[i]

  # set names attribute to be equal to index i [creating unique profile IDs]
  #   i.e. 2_10 will be profile ID 2 from 10th dataset
  names(xn) <- i

  # harmonize each data source, using unique column name and target name "foo"
  harmonize(spcs[[i]], x.names = list(foo = xn))
}))

# inspect a subset
plotSPC(bigspc[1:30,], color = "foo")

Find horizons with colors darker than a Munsell hue, value, chroma threshold

Description

hasDarkColors returns a boolean value by horizon representing whether darkness thresholds are met. The code is fully vectorized and deals with missing data and optional thresholds.

Default arguments are set up for "5-3-3 colors" – the basic criteria for Mollic/Umbric epipedon/mineral soil darkness. Any of the thresholds or column names can be altered. Any thresholds that are set equal to NA will be ignored.

Usage

hasDarkColors(
  p,
  d_hue = NA,
  m_hue = NA,
  d_value = 5,
  d_chroma = NA,
  m_value = 3,
  m_chroma = 3,
  dhuenm = "d_hue",
  dvalnm = "d_value",
  dchrnm = "d_chroma",
  mhuenm = "m_hue",
  mvalnm = "m_value",
  mchrnm = "m_chroma"
)

Arguments

p

A SoilProfileCollection.

d_hue

Optional: character vector of dry hues to match (default: NA)

m_hue

Optional: character vector of moist hues to match (default: NA)

d_value

Maximum value of dry value (default: 5)

d_chroma

Optional: Maximum value of dry chroma (default: NA)

m_value

Maximum value of moist value (default: 3)

m_chroma

Maximum value of moist chroma (default: 3)

dhuenm

Column name containing dry hue.

dvalnm

Column name containing dry value.

dchrnm

Column name containing dry chroma.

mhuenm

Column name containing moist hue.

mvalnm

Column name containing moist value.

mchrnm

Column name containing moist chroma.

Value

Boolean value (for each horizon in p) reflecting whether "darkness" criteria are met.

Author(s)

Andrew G. Brown

Examples

# construct a fake profile
spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxeralfs",
                  hzdesgn  = c("A","AB","Bt","BCt","R"),
                  hzdept   = c(0, 20, 32, 42,  49),
                  hzdepb   = c(20, 32, 42, 49, 200),
                  d_value  = c(5,   5,  5,  6,  NA),
                  m_value  = c(2.5, 3,  3,  4,  NA),
                  m_chroma = c(2,   3,  4,  4,  NA))

# promote to SoilProfileCollection
depths(spc) <- id ~ hzdept + hzdepb

# print results in table
data.frame(id = spc[[idname(spc)]],
           hz_desgn = spc$hzdesgn,
           has_dark_colors = hasDarkColors(spc))

Horizon Color Indices

Description

Calculate basic horizon-level color indices for a SoilProfileCollection. Basic indices do not require aggregation over the whole profile or comparison to a "reference" (e.g. parent material) color. Includes Hurst (1977) Redness Index, Barron-Torrent Redness Index (1986) and Buntley-Westin Index (1965). This is a wrapper method around several horizon-level indices. See the individual functions for more details.

Usage

horizonColorIndices(p, hue = "m_hue", value = "m_value", chroma = "m_chroma")

Arguments

p

A SoilProfileCollection

hue

Column name containing moist hue; default: "m_hue"

value

Column name containing moist value; default: "m_value"

chroma

Column name containing moist chroma; default: "m_chroma"

Value

A data.frame containing unique pedon and horizon IDs and horizon-level color indices.

Author(s)

Andrew G. Brown

See Also

hurst.redness barron.torrent.redness.LAB buntley.westin.index

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

data(sp1)

# promote sp1 data to SoilProfileCollection
depths(sp1) <- id ~ top + bottom

# move site data
site(sp1) <- ~ group

# use Munsell color notation as horizon name
sp1$m <- sprintf("%s %s/%s", sp1$hue, sp1$value, sp1$chroma)

# compute indices
# merged into `sp1` with left-join on hzidname(sp1)
horizons(sp1) <- horizonColorIndices(sp1, hue="hue", value="value", chroma="chroma")

# visualize
par(mar = c(0, 1, 3, 1))
plotSPC(sp1, color='hurst_redness', name = 'm')
plotSPC(sp1, color='barron_torrent_redness', name = 'm')
plotSPC(sp1, color='buntley_westin', name = 'm')

Set horizon depth column names

Description

Set column name containing horizon ID

Get column names containing horizon depths

Usage

## S4 replacement method for signature 'SoilProfileCollection'
horizonDepths(object) <- value

## S4 method for signature 'SoilProfileCollection'
horizonDepths(object)

Arguments

object

a SoilProfileCollection

value

a character vector of length two with names of columns containing numeric top and bottom depths


Set horizon column names

Description

Set horizon column names

Get names of columns in horizon table.

Usage

## S4 replacement method for signature 'SoilProfileCollection'
horizonNames(object) <- value

## S4 method for signature 'SoilProfileCollection'
horizonNames(object)

Arguments

object

a SoilProfileCollection

value

a unique vector of equal length to number of columns in horizons length(horizonNames(object))


Retrieve horizon data from SoilProfileCollection

Description

Get horizon data from SoilProfileCollection. Result is returned in the same data.frame class used to initially construct the SoilProfileCollection.

Horizon data in an object inheriting from data.frame can easily be added via merge (LEFT JOIN). There must be one or more same-named columns (with at least some matching data) on the left and right hand side to facilitate the join: horizons(spc) <- newdata

Usage

## S4 method for signature 'SoilProfileCollection'
horizons(object)

## S4 replacement method for signature 'SoilProfileCollection'
horizons(object) <- value

Arguments

object

A SoilProfileCollection

value

An object inheriting data.frame

Examples

# load test data
data(sp2)

# promote to SPC
depths(sp2) <- id ~ top + bottom

# assign true to surface horizon
newdata <- data.frame(top = 0,
                      newvalue = TRUE)

# do left join
horizons(sp2) <- newdata

# inspect site table: newvalue TRUE only for horizons
#  with top depth equal to zero
horizons(sp2)

Munsell Hue Reference and Position Searching

Description

The 40 Munsell hues are typically arranged from 5R to 2.5R moving clock wise on the unit circle. This function matches a vector of hues to positions on that circle, with options for setting a custom origin or search direction.

This function is fully vectorized.

Usage

huePosition(
  x,
  returnHues = FALSE,
  includeNeutral = FALSE,
  origin = "5R",
  direction = c("cw", "ccw")
)

Arguments

x

character vector of hues, e.g. c('10YR', '5YR'), optional if returnHues = TRUE

returnHues

logical, should the full set of Munsell hues be returned? See details.

includeNeutral

logical, add 'N' to the end of the full set of Munsell hues

origin

hue to be used as the starting point for position searches (position 1)

direction

indexing direction, should be cw (clock wise) or ccw (counter-clock wise)

Value

A vector of integer hue positions is returned, of the same length and order as x. If returnHues = TRUE, then all hue names and ordering are returned and x is ignored.

Author(s)

D.E. Beaudette

References

  • Soil Survey Technical Note 2 wayback machine URL

  • Munsell book of color. 1976. Macbeth, a Division of Kollmorgen Corp., Baltimore, MD.

See Also

colorContrast, huePositionCircle

Examples

# get hue ordering for setting levels of a factor
huePosition(returnHues = TRUE)

# get hue ordering including N (neutral)
huePosition(returnHues = TRUE, includeNeutral = TRUE)

# get position of the '10YR' hue, relative to standard origin of '5R'
# should be 7
huePosition(x = '10YR')

# get position of the '10YR' hue, relative to standard origin of '5YR'
# should be 3
huePosition(x = '10YR', origin = '5YR')

# visualize
op <- par(mar = c(0, 0, 0, 0), fg = 'white', bg = 'black')

huePositionCircle(huePosition(returnHues = TRUE, origin = '5YR'))

par(op)

Visual Description of Munsell Hue Ordering

Description

Munsell hues are arranged on the unit circle with "neutral" at the center.

Usage

huePositionCircle(
  hues = huePosition(returnHues = TRUE),
  value = 6,
  chroma = 10,
  chip.cex = 5.5,
  label.cex = 0.66,
  seg.adj = 0.8,
  seg.col = grey(0.4),
  plot = TRUE,
  simulateCVD = NULL,
  CVDseverity = 1
)

Arguments

hues

vector of Munsell hues, commonly derived from huePosition()

value

single integer, Munsell value used to create an actual color

chroma

single integer, Munsell chroma used to create an actual color

chip.cex

numeric, scaling for color chips

label.cex

numeric, scaling labels

seg.adj

numeric, scaling for line segment cues

seg.col

single color, color used for line segment cues

plot

logical, generate output on the current graphics device

simulateCVD

simulate color vision deficiencies with the colorspace package, should be the character representation of a function name, one of: 'deutan', 'protan', or 'tritan'.

CVDseverity

numeric value between 0 (none) and 1 (total), describing the severity of the color vision deficiency

Value

an invisible data.frame of data used to create the figure

Note

The best results are obtained when setting margins to zero, and inverting foreground / background colors. For example: par(mar = c(0, 0, 0, 0), fg = 'white', bg = 'black').

References

Munsell book of color. 1976. Macbeth, a Division of Kollmorgen Corp., Baltimore, MD.

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))


# better graphics defaults
op <- par(
mar = c(0, 0, 0, 0), 
fg = 'white', 
bg = 'black', 
xpd = NA
)

# full set of hues, as generated by huePosition(returnHues = TRUE)
huePositionCircle()

# just a few hues
huePositionCircle(hues = c('5R', '5Y', '5G', '5B', '5P'))

# adjust Munsell value and chroma
huePositionCircle(value = 3, chroma = 6)

# reset graphics state
par(op)

Hurst (1977) Redness Index

Description

Calculate Redness Index after Hurst (1977) "Visual estimation of iron in saprolite" DOI: 10.1130/0016-7606(1977)88<174:VEOIIS>2.0.CO;2. Accepts vectorized inputs for hue, value and chroma, produces vector output.

Usage

hurst.redness(hue, value, chroma)

Arguments

hue

A character vector containing Munsell hues (e.g. "7.5YR")

value

A numeric vector containing Munsell values

chroma

A numeric vector containing Munsell chromas

Value

A numeric vector of horizon redness index (lower values = redder).

Author(s)

Andrew G. Brown

References

Hurst, V.J. (1977) Visual estimation of iron in saprolite. GSA Bulletin. 88(2): 174–176. doi: https://doi.org/10.1130/0016-7606(1977)88<174:VEOIIS>2.0.CO;2


Dissolving horizon boundaries by grouping variables

Description

This function dissolves or combines horizons that have a common set of grouping variables. It only combines those horizon records that are sequential (e.g. share a horizon boundary). Thus, it can be used to identify discontinuities in the grouping variables along a profile and their unique depths. It is particularly useful for determining the depth to the top or bottom of horizons with a specific category, and should be simpler than previous methods that require aggregating over profiles.

Usage

hz_dissolve(
  object,
  by,
  idcol = "id",
  depthcols = c("top", "bottom"),
  collapse = FALSE,
  order = FALSE
)

dissolve_hz(
  object,
  by,
  id = "idcol",
  hztop = "top",
  hzbot = "bottom",
  collapse = FALSE,
  order = FALSE
)

Arguments

object

a data.frame

by

character: column names, to be used as grouping variables, within the object.

idcol

character: column name of the pedon ID within the object.

depthcols

a character vector of length 2 specifying the names of the horizon depths (e.g. c("top", "bottom")).

collapse

logical: indicating whether to not combine grouping variables before dissolving.

order

logical: indicating whether or not to order the object by the id, hztop, and hzbot columns.

id

deprecated and replaced with idcol.

hztop

deprecated and replaced by depthcols.

hzbot

deprecated and replaced by depthcols.

Details

This function assumes the profiles and horizons within the object follow the logic defined by checkHzDepthLogic (e.g. records are ordered sequentially by id, hztop, and hzbot and without gaps). If the records are not ordered, set the order = TRUE.

Value

A data.frame with the original idcol, by grouping variables, and non-consecutive horizon depths.

Author(s)

Stephen Roecker

See Also

hz_lag(), hz_intersect(), hz_segment() , checkHzDepthLogic()

Examples

# example 1
data(jacobs2000)
spc <- jacobs2000

spc$dep_5 <- spc$depletion_pct >=5
spc$genhz <- generalize.hz(spc$name, c("A", "E", "B", "C"), c("A", "E", "B", "C")) 
h <- horizons(spc)

test <- hz_dissolve(h, by = c("genhz", "dep_5"), idcol = "id", depthcols = c("top", "bottom"))

vars <- c("id", "top", "bottom", "genhz", "dep_5")
h[h$id == "92-1", vars]
test[test$id == "92-1", ]


# example 2
df <- data.frame(
    id = 1,
    top    = c(0, 5,  10, 15, 25, 50), 
    bottom = c(5, 10, 15, 25, 50, 100),
    hzname = c("A1",  "A2",  "E/A", "2Bt1", "2Bt2", "2C"),
    genhz  = c("A",   "A",   "E",   "2Bt",  "2Bt", "2C"),
    texcl  = c("sil", "sil", "sil", "sl",   "sl",   "s")
    )

df

hz_dissolve(df, c("genhz", "texcl"))
hz_dissolve(df, c("genhz", "texcl"), collapse = TRUE)

test <- hz_dissolve(df, "genhz")
subset(test, value == "2Bt")

Intersecting horizon boundaries by horizon depths

Description

This function intersects two horizon tables by harmonizing their depths and merging them where they overlap. This can be useful to rejoin the results of hz_dissolve() to it's original horizon table, and then perform an aggregation on the dissolved variables.

Usage

hz_intersect(x, y, idcol = "id", depthcols = c("top", "bottom"))

Arguments

x

a data.frame

y

a data.frame

idcol

character: column name of the pedon ID within the object.

depthcols

a character vector of length 2 specifying the names of the horizon depths (e.g. c("top", "bottom")).

Details

.

Value

A data.frame with harmonized depth intervals (i.e. segment_id) and columns from both of the original data.frame. If both data.frame contain the same column names, they will both be returned (with the exception of the idcol and depthcols), and appended with either x or y to indicate which data.frame they originated from.

Author(s)

Stephen Roecker

See Also

hz_dissolve(), hz_lag(), hz_segment()

Examples

h <- data.frame(
  id = 1,
  top    = c(0,  25, 44, 46, 50),
  bottom = c(25, 44, 46, 50, 100),
  by     = c("Yes", "Yes", "No", "No", "Yes"),
  clay   = c(10, 12, 27, 35, 16)
)

hz_dissolve(h, "by")

hz_intersect(x = hz_dissolve(h, "by"), y = h)

hi <- hz_intersect(x = h, y = hz_dissolve(h, "by"))
aggregate(clay ~ dissolve_id, data = hi, mean)

Find lagged horizon values

Description

This function finds adjacent values to a horizon values at lagged distances.

Usage

hz_lag(
  object,
  lag = 1,
  unit = "index",
  idcol = "id",
  depthcols = c("top", "bottom"),
  order = FALSE
)

Arguments

object

a data.frame

lag

integer: number of horizons to lag

unit

character: lag units in index or depth.

idcol

character: column name of the pedon ID within the object.

depthcols

a character vector of length 2 specifying the names of the horizon depths (e.g. c("top", "bottom")).

order

logical: indicating whether or not to order the #'

Details

.

Value

A data.frame with lagged values.

Author(s)

Stephen Roecker

See Also

hz_dissolve(), hz_intersect(), hz_segment()

Examples

h <- data.frame(
  id = 1,
  top    = c(0,  25, 44, 46, 50),
  bottom = c(25, 44, 46, 50, 100),
  texcl     = c("SL", "SL", "CL", "CL", "L"),
  clay   = c(10, 12, 27, 35, 16)
)

hz_lag(h)

hz_lag(h, -1)

hz_lag(h, 10:15, unit = "depth")

transform(cbind(h, lag = hz_lag(h)), 
  clay_dif = lag.clay_bot.1 - clay,
  texcl_contrast = paste0(texcl, "-", lag.texcl_bot.1)
)

Segmenting of Soil Horizon Data by Depth Interval

Description

This function segments or subdivides horizon data from a SoilProfileCollection or data.frame by depth interval (e.g. c(0, 10), c(0, 50), or 25:100). This results in horizon records being split at the specified depth intervals, which duplicates the original horizon data but also adds new horizon depths. In addition, labels (i.e. "segment_id") are added to each horizon record that correspond with their depth interval (e.g. 025-100). This function is intended to harmonize horizons to a common support (i.e. depth interval) for further aggregation or summary. See the examples.

Usage

hz_segment(object, intervals, trim = TRUE, depthcols = c("top", "bottom"))

segment(object, intervals, trim = TRUE, hzdepcols = c("top", "bottom"))

Arguments

object

either a SoilProfileCollection or data.frame

intervals

a vector of integers over which to slice the horizon data (e.g. c(25, 100) or 25:100)

trim

logical, when TRUE horizons in object are truncated to the min/max specified in intervals. When FALSE, those horizons overlapping an interval are marked as such. Care should be taken when specifying more than one depth interval and trim = FALSE.

depthcols

a character vector of length 2 specifying the names of the horizon depths (e.g. c("top", "bottom")), only necessary if object is a

hzdepcols

deprecated being replaced by depthcols.

Details

hz_segment() performs no aggregation or resampling of the source data, rather, labels are added to horizon records for subsequent aggregation or summary. This makes it possible to process a very large number of records outside of the constraints associated with e.g. slice() or slab().

Value

Either a SoilProfileCollection or data.frame with the original horizon data segmented by depth intervals. There are usually more records in the resulting object, one for each time a segment interval partially overlaps with a horizon. A new column called segment_id identifying the depth interval is added.

Author(s)

Stephen Roecker

See Also

dice(), glom(), hz_dissolve(), hz_lag(), hz_intersect()

Examples

# example data
data(sp1)

# upgrade to SPC
depths(sp1) <- id ~ top + bottom

# segment and trim
z <- hz_segment(sp1, intervals = c(0, 10, 20, 30), trim = TRUE)

# display segment labels
# note that there are new horizon boundaries at segments
par(mar = c(0, 0, 3, 1))
plotSPC(z, color = 'segment_id', width = 0.3)

# highlight new horizon records
par(mar = c(0, 0, 2, 1))
plotSPC(z, color = NA, default.color = NA, width = 0.3, lwd = 1)
plotSPC(sp1, color = NA, default.color = NA, 
width = 0.3, lwd = 3, add = TRUE, name = NA, print.id = FALSE)
legend('top', horiz = TRUE, 
legend = c('original', 'segmented'), 
lwd = c(1, 3), cex = 0.85, bty = 'n')


# same results as slab()
# 10 random profiles
s <- lapply(1:10, random_profile, n_prop = 1, SPC = TRUE, method = 'random_walk')
s <- combine(s)

a.slab <- slab(s, fm = ~ p1, slab.structure = c(0, 10, 20, 30), slab.fun = mean, na.rm = TRUE)

z <- hz_segment(s, intervals = c(0, 10, 20, 30), trim = TRUE)
z <- horizons(z)
z$thick <- z$bottom - z$top

a.segment <- sapply(split(z, z$segment_id), function(i) {
  weighted.mean(i$p1, i$thick)
})


res <- data.frame(
  slab = a.slab$value,
  segment = a.segment,
  diff = a.slab$value - a.segment
)

print(res)
res$diff < 0.001



data(sp5)

# segment by upper 25-cm
test1 <- hz_segment(sp5, intervals = c(0, 100))
print(test1)
nrow(test1)
print(object.size(test1), units = "Mb")

# segment by 1-cm increments
test2 <- hz_segment(sp5, intervals = 0:100)
print(test2)
nrow(test2)
print(object.size(test2), units = "Mb")


# segment and aggregate
test3 <- hz_segment(horizons(sp5), 
                 intervals = c(0, 5, 15, 30, 60, 100, 200), 
                 depthcols = c("top", "bottom")
)
test3$hzthk <- test3$bottom - test3$top
test3_agg <- by(test3, test3$segment_id, function(x) {
  data.frame(
    hzID = x$hzID[1],
    segment_id = x$segment_id[1],
    average = weighted.mean(x$clay, w = x$hzthk)
  )
})
test3_agg <- do.call("rbind", test3_agg)

head(test3_agg)

Allocate Particle Size Class for the Control Section.

Description

This function aggregates information in the horizon table and allocates it to the particle size class for the control section.

Usage

hz_to_taxpartsize(
  x,
  y,
  taxpartsize = "taxpartsize",
  clay = "clay",
  idcol = "id",
  depthcols = c("top", "bottom")
)

Arguments

x

a data.frame containing the original horizon table.

y

a data.frame containing the particle size control section depths for each idcol.

taxpartsize

character column name for taxonomic family particle size class.

clay

character column name for clay percent.

idcol

character: column name of the pedon ID within the object.

depthcols

a character vector of length 2 specifying the names of the horizon depths (e.g. c("top", "bottom")).

Details

This function differs from texture_to_taxpartsize in that is aggregates the results of texture_to_taxpartsize, and accounts for strongly contrasting particle size classes.

Value

A data.frame object containing the original idcol, the aggregated particle size control section allocation, and an aniso column to indicate more than one contrasting class.

Author(s)

Stephen Roecker

See Also

texture_to_taxpartsize(), lookup_taxpartsize()

Examples

h <- data.frame(
  id = 1,
  hzname = c("A", "BA", "Bw", "BC", "C"),
  top    = c(0, 10, 45, 60,  90),
  bottom = c(10, 45, 60, 90, 150),
  clay   = c(15, 16, 45, 20,  10),
  sand   = c(10, 35, 40, 50,  90),
  frags  = c(0,  5, 10, 38,  40)
)

h <- cbind(h,
           texcl = ssc_to_texcl(clay = h$clay, sand = h$sand))

pscs <- data.frame(id = 1,
                   top = 25,
                   bottom = 100)

h <- cbind(h,
           taxpartsize = texture_to_taxpartsize(
             texcl = h$texcl,
             clay  = h$clay,
             sand  = h$sand,
             fragvoltot = h$frags
           ))

depths(h) <- id ~ top + bottom

# set required metadata for estimatePSCS()
hzdesgnname(h) <- "hzname"
hztexclname(h) <- "texcl"
hzmetaname(h, "clay") <- "clay"

pscs <- data.frame(id = h$id, rbind(estimatePSCS(h)))
names(pscs)[2:3] <- c("top", "bottom")

hz_to_taxpartsize(horizons(h), pscs)

Horizons Above or Below

Description

Horizons Above or Below

Usage

hzAbove(x, ..., offset = 1, SPC = TRUE, simplify = SPC)

hzBelow(x, ..., offset = 1, SPC = TRUE, simplify = SPC)

hzOffset(x, hzid, offset, SPC = FALSE, simplify = TRUE)

Arguments

x

A SoilProfileCollection

...

Comma-separated set of R expressions that evaluate as TRUE or FALSE in context of horizon data frame. Length for individual expressions matches number of horizons, in x.

offset

Integer offset in terms of SoilProfileCollection ⁠[,j]⁠ (horizon/slice) index

SPC

Return a SoilProfileCollection? Default TRUE for ⁠horizon_*⁠ methods.

simplify

If TRUE return a vector (all elements combined), or a list (1 element per profile). If SPC is TRUE then simplify is TRUE.

hzid

A vector of target horizon IDs. These are calculated from ... for ⁠horizon_*()⁠ methods

Details

To minimize likelihood of issues with non-standard evaluation context, especially when using hzAbove()/hzBelow() inside another function, all expressions used in ... should be in terms of variables that are in the horizon data frame.

Value

A SoilProfileCollection (when SPC = TRUE) or a vector of horizon row indices (when SPC = FALSE and simplify = TRUE) or a list (when SPC = FALSE and simplify = FALSE))

Examples

data(sp4)
depths(sp4) <- id ~ top + bottom

# get the horizon above the last horizon (j-index of bottom horizon minus 1)
hzAbove(sp4, hzID(sp4) %in% getLastHorizonID(sp4))

# get horizons below the last horizon (none; j-index of bottom horizon plus 1)
hzBelow(sp4, hzID(sp4) %in% getLastHorizonID(sp4))

Subset SoilProfileCollection Objects or Horizons via checkHzDepthLogic

Description

This function removes profiles or horizons from a SoilProfileCollection that are flagged as having invalid horizon depth logic by checkHzDepthLogic. Invalid profiles may be created when setting byhz = TRUE; use caution as some functions may not work properly in the presence of gaps. Consider using fillHzGaps to fill these gaps.

Usage

HzDepthLogicSubset(x, byhz = FALSE)

Arguments

x

a SoilProfileCollection object

byhz

logical, evaluate horizon depth logic at the horizon level (profile level if FALSE)

Value

a SoilProfileCollection object

Note

This function cannot identify (and remove) overlapping horizons when byhz = TRUE.


Tests of horizon depth logic

Description

Function used internally by checkHzDepthLogic(), glom() and various other functions that operate on horizon data from single soil profiles and require a priori depth logic checks. Checks for bottom depths less than top depth / bad top depth order ("depthLogic"), bottom depths equal to top depth ("sameDepth"), overlaps/gaps ("overlapOrGap") and missing depths ("missingDepth"). Use names(res)[res] on result res of hzDepthTest() to to determine type of logic error(s) found – see examples below.

Usage

hzDepthTests(top, bottom = NULL)

Arguments

top

A numeric vector containing horizon top depths. Or a data.frame with two columns (first containing top depths, second containing bottom)

bottom

A numeric vector containing horizon bottom depths.

Value

A named logical vector containing TRUE for each type of horizon logic error found in the given data.

Author(s)

Andrew G. Brown & Dylan E. Beaudette

Examples

# no logic errors
res <- hzDepthTests(top = c(0,10,20,30), bottom = c(10,20,30,50))
names(res)[res]

# bottom < top
hzDepthTests(top = c(10,20,30,50), bottom = c(0,10,20,30))
names(res)[res]

# bottom == top
hzDepthTests(top = c(10,20,30,50), bottom = c(0,20,20,30))
names(res)[res]

# overlap
hzDepthTests(top = c(0,5,20,30), bottom = c(10,20,30,50))
names(res)[res]

# gap
hzDepthTests(top = c(0,15,20,30), bottom = c(10,20,30,50))
names(res)[res]

# missing
hzDepthTests(c(0,15,NA,30),c(10,NA,30,50))
names(res)[res]

Get horizon designation column name

Description

Get horizon designation names

Usage

## S4 method for signature 'SoilProfileCollection'
hzDesgn(object)

Arguments

object

a SoilProfileCollection


Get or Set Horizon Designation Column Name

Description

hzdesgnname(): Get column name containing horizon designations

⁠hzdesgnname<-⁠: Set horizon designation column name

Usage

## S4 method for signature 'SoilProfileCollection'
hzdesgnname(object, required = FALSE)

## S4 replacement method for signature 'SoilProfileCollection'
hzdesgnname(object, required = FALSE) <- value

Arguments

object

a SoilProfileCollection

required

logical, is this attribute required? If it is, set to TRUE to trigger error on invalid value.

value

character, name of column containing horizon designations

Details

Store the column name containing horizon designations or other identifiers in the metadata slot of the SoilProfileCollection.

See Also

hzDesgn()

Examples

data(sp1)

# promote to SPC
depths(sp1) <- id ~ top + bottom

# set horizon designation column
hzdesgnname(sp1) <- "name"

# get horizon designation column
hzdesgnname(sp1)

Convert Horizon Boundary Distinctness to Vertical Offset

Description

This function will convert USDA-NCSS horizon boundary distinctness codes into vertical (+/-) offsets in cm, based on the Field Book for Describing and Sampling Soils, version 3.0.

Usage

hzDistinctnessCodeToOffset(
  x,
  codes = c("very abrupt", "abrupt", "clear", "gradual", "diffuse"),
  offset = c(0.5, 2, 5, 15, 20)/2
)

Arguments

x

vector of boundary distinctness codes to be converted

codes

character vector of distinctness terms ('clear') or codes ('C'), case insensitive, see details

offset

vertical offset factors (cm), approximating 1/2 of the transitional zone thickness, see details

Details

The default offsets are based on the high-end of ranges presented in "transitional zone thickness criteria" from the Field Book version 3.0 (page 2-6). Offsets are returned as 1/2 of the transitional zone thickness so that horizon boundaries can be adjusted up/down from horizon depths. See plotSPC, specifically the hz.distinctness.offset argument for visualization ideas. Missing data in x (NA) or codes that are not defined in codes are returned as 0 offsets.

Either format (or mixture) are accepted, case insensitive:

  • terms: c('very abrupt', 'abrupt', 'clear', 'gradual', 'diffuse')

  • coded values: ⁠c('v', 'a', 'c', 'g', d')⁠

Additional examples are available in the Visualization of Horizon Boundaries tutorial.

Value

vector of offsets with same length as x

Author(s)

D.E. Beaudette

References

Field Book for Describing and Sampling Soils, version 3.0

See Also

plotSPC

Examples

# example data
data(sp1)

# compute 1/2 transitional zone thickness from distinctness codes
sp1$hzdo <- hzDistinctnessCodeToOffset(sp1$bound_distinct)

# convert colors from Munsell to hex-encoded RGB
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))

# promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
hzdesgnname(sp1) <- 'name'

# adjust margins
op <- par(mar=c(0,0,0,1.5))

# sketches, adjust width, adjust text size, include coded hz distinctness offsets
plotSPC(sp1, width=0.3, cex.names=0.75, hz.distinctness.offset = 'hzdo')

# clean-up
par(op)

Set horizon IDs

Description

Set vector containing horizon IDs

Get vector containing horizon IDs

Usage

## S4 replacement method for signature 'SoilProfileCollection'
hzID(object) <- value

## S4 method for signature 'SoilProfileCollection'
hzID(object)

Arguments

object

a SoilProfileCollection

value

a unique vector of equal length to number of horizons nrow(object)


Set horizon ID column name

Description

Set unique horizon ID column name

Get column name containing unique horizon ID

Usage

## S4 replacement method for signature 'SoilProfileCollection'
hzidname(object) <- value

## S4 method for signature 'SoilProfileCollection'
hzidname(object)

Arguments

object

a SoilProfileCollection

value

character, column name containing unique horizon ID values

Examples

data(sp1)

# promote to SPC
depths(sp1) <- id ~ top + bottom

# create new horizon ID
sp1$hzIDrev <- rev(sp1$hzID)

# set horizon designation column
hzidname(sp1) <- "hzIDrev"

# get horizon designation column
hzidname(sp1)

Get horizon-level metadata

Description

Get idname(object) and hzidname(object), with hzdesgnname(object), hztexclname(object) (if defined)

Usage

## S4 method for signature 'SoilProfileCollection'
hzMetadata(object)

Arguments

object

a SoilProfileCollection


Get or Set Horizon Metadata Column Name

Description

hzmetaname(): Get column name containing horizon data of interest

⁠hzmetaname<-⁠: Set horizon designation column name

Usage

## S4 method for signature 'SoilProfileCollection'
hzmetaname(object, attr, required = FALSE)

## S4 replacement method for signature 'SoilProfileCollection'
hzmetaname(object, attr, required = FALSE) <- value

Arguments

object

A SoilProfileCollection

attr

character. Base name for attribute to be stored in metadata. This is prefixed with "aqp_hz" for horizon-level metadata for column attributes. e.g. attr="clay" results in metadata value retrieved from "aqp_hzclay".

required

logical. Is this attribute required? If it is, set to TRUE to trigger error on invalid value.

value

character. Name of horizon-level column containing data corresponding to attr.

Details

Store the column name containing a specific type of horizon data in the metadata slot of the SoilProfileCollection.

See Also

guessHzAttrName()

Examples

data(sp1)

# promote to SPC
depths(sp1) <- id ~ top + bottom

# set important metadata columns
hzdesgnname(sp1) <- "name"
hztexclname(sp1) <- "texture"

# set custom horizon property (clay content) column
hzmetaname(sp1, "clay") <- "prop"

# inspect metadata list
metadata(sp1)

# get horizon clay content column
hzmetaname(sp1, "clay")

# uses hzdesgname(), hztexclname(), hzmetaname(attr="clay") in function definition
estimatePSCS(sp1)

Get or Set Horizon Texture Class Column Name

Description

hztexclname(): Get column name containing horizon designation name

⁠hztexclname<-⁠: Set horizon texture class column name for a SoilProfileCollection

Usage

## S4 method for signature 'SoilProfileCollection'
hztexclname(object, required = FALSE)

## S4 replacement method for signature 'SoilProfileCollection'
hztexclname(object, required = FALSE) <- value

Arguments

object

a SoilProfileCollection

required

logical, is this attribute required? If it is, set to TRUE to trigger error on invalid value.

value

character, name of column containing horizon texture classes

Details

Store the column name containing horizon texture classes or other identifiers in the metadata slot of the SoilProfileCollection.

Examples

data(sp1)

# promote to SPC
depths(sp1) <- id ~ top + bottom

# set horizon texture class column
hztexclname(sp1) <- "texture"

# get horizon texture class column
hztexclname(sp1)

Convert Horizon Boundary Topography to Line Type

Description

This function will convert USDA-NCSS horizon boundary topography codes into line types, based on the Field Book for Describing and Sampling Soils, version 3.0.

Usage

hzTopographyCodeToLineType(
  x,
  codes = c("smooth", "wavy", "irregular", "broken"),
  lty = c(1, 2, 3, 4)
)

Arguments

x

vector of boundary topography codes to be converted

codes

character vector of topography terms ('smooth') or codes ('S'), case insensitive, see details

lty

line types

Details

Visualization of horizon boundary topography can be difficult, line type offers an additional visual cue. See hzTopographyCodeToOffset for an offset-based approach. Additional examples are available in the Visualization of Horizon Boundaries tutorial. Missing data in x (NA) or codes that are not defined in codes are returned as line type 1.

Either format (or mixture) are accepted, case insensitive:

  • terms: c('smooth', 'wavy', 'irregular', 'broken')

  • coded values: c('s', 'w', 'i', 'b')

Value

vector of line types with same length as x

Author(s)

D.E. Beaudette

References

Field Book for Describing and Sampling Soils, version 3.0

See Also

plotSPC, hzTopographyCodeToOffset


Convert Horizon Boundary Topography to Vertical Offset

Description

This function will convert USDA-NCSS horizon boundary topography codes into a vertical offset, suitable for use in plotSPC. Default values are reasonable starting points for encoding smooth, wavy, irregular, or broken style horizon boundary topography as defined in Field Book for Describing and Sampling Soils, version 3.0.

Usage

hzTopographyCodeToOffset(
  x,
  codes = c("smooth", "wavy", "irregular", "broken"),
  offset = c(0, 4, 8, 12)
)

Arguments

x

vector of boundary topography codes to be converted

codes

character vector of topography terms ('smooth') or codes ('S'), case insensitive, see details

offset

vertical offset (depth units) used to create "chevron" effect

Details

Additional examples are available in the Visualization of Horizon Boundaries tutorial. Missing data in x (NA) or codes that are not defined in codes are returned with an offset of 0.

Either format (or mixture) are accepted, case insensitive:

  • terms: c('smooth', 'wavy', 'irregular', 'broken')

  • coded values: c('s', 'w', 'i', 'b')

Value

vector of vertical offsets with same length as x

Author(s)

D.E. Beaudette

References

Field Book for Describing and Sampling Soils, version 3.0

See Also

plotSPC


Horizon Transition Probabilities

Description

Functions for creating and working with horizon (sequence) transition probability matrices.

See the following tutorials for some ideas:

Usage

hzTransitionProbabilities(
  x,
  name = GHL(x, required = TRUE),
  loopTerminalStates = FALSE
)

mostLikelyHzSequence(mc, t0, maxIterations = 10)

Arguments

x

a SoilProfileCollection object.

name

A horizon level attribute in x that names horizons.

loopTerminalStates

should terminal states loop back to themselves?

This is useful when the transition probability matrix will be used to initialize a markovchain object. See examples below.

mc

Passed to markovchain conditionalDistribution()

t0

Passed to markovchain conditionalDistribution()

maxIterations

Maximum number of iterations. Default: 10

Value

A square matrix of transition probabilities. See examples.

The function genhzTableToAdjMat() returns a square adjacency matrix. See examples.

The function mostLikelyHzSequence() returns the most likely sequence of horizons, given a markovchain object initialized from horizon transition probabilities and an initial state, t0. See examples.

Note

These functions are still experimental and subject to change.

Author(s)

D.E. Beaudette

See Also

generalize.hz()

Examples

data(sp4)
depths(sp4) <- id ~ top + bottom

# horizon transition probabilities: row -> col transitions
(tp <- hzTransitionProbabilities(sp4, 'name'))


## Not run: 
## plot TP matrix with functions from sharpshootR package
library(sharpshootR)
par(mar=c(0,0,0,0), mfcol=c(1,2))
plotSPC(sp4, name = 'name', name.style = 'center-center')
plotSoilRelationGraph(tp, graph.mode = 'directed', edge.arrow.size=0.5)

## demonstrate genhzTableToAdjMat usage
data(loafercreek, package='soilDB')

# convert contingency table -> adj matrix / TP matrix
tab <- table(loafercreek$hzname, loafercreek$genhz)
m <- genhzTableToAdjMat(tab)

# plot
par(mar=c(0,0,0,0), mfcol=c(1,1))
plotSoilRelationGraph(m, graph.mode = 'directed', edge.arrow.size=0.5)


## demonstrate markovchain integration
library(markovchain)
tp.loops <- hzTransitionProbabilities(sp4, 'name', loopTerminalStates = TRUE)

# init new markovchain from TP matrix
mc <- new("markovchain", states=dimnames(tp.loops)[[1]], transitionMatrix = tp.loops)

# simple plot
plot(mc, edge.arrow.size=0.5)

# check absorbing states
absorbingStates(mc)

# steady-state:
steadyStates(mc)

## End(Not run)

Get profile ID column name

Description

Get column name containing unique profile IDs

Usage

## S4 method for signature 'SoilProfileCollection'
idname(object)

Arguments

object

a SoilProfileCollection


Initialize Spatial Data in a SoilProfileCollection

Description

⁠initSpatial()<-⁠: Set the column names containing spatial data and the corresponding coordinate reference system for a SoilProfileCollection.

getSpatial(): Get spatial data associated with a SoilProfileCollection

Usage

## S4 replacement method for signature 'SoilProfileCollection,ANY,ANY'
initSpatial(object, crs = NULL) <- value

## S4 replacement method for signature 'SoilProfileCollection,ANY,character'
initSpatial(object, crs = NULL) <- value

## S4 method for signature 'SoilProfileCollection'
getSpatial(object)

## S4 method for signature 'SoilProfileCollection'
coordinates(obj)

## S4 replacement method for signature 'SoilProfileCollection,ANY'
coordinates(object) <- value

## S4 replacement method for signature 'SoilProfileCollection,character'
coordinates(object) <- value

Arguments

object

A SoilProfileCollection

crs

Optional: character. Representation of Coordinate Reference System as "authority:code", integer EPSG code, WKT2019 or PROJ4 string, an sf crs or sp CRS object.

value

A formula specifying names of columns containing geometry (x and y coordinates), or character with the column names

obj

A SoilProfileCollection

See Also

prj()

Examples

data(sp5)

# coordinates are stored in x and y column of site
sp5$x <- rnorm(length(sp5))
sp5$y <- rnorm(length(sp5))

# coordinates takes a formula object as input
initSpatial(sp5) <- ~ x + y

# optionally specify Coordinate Reference System (crs) on left-hand side
initSpatial(sp5, crs = "OGC:CRS84") <- ~ x + y

Make High Contrast Label Colors

Description

Generate a vector of white or black label colors conditioned on a vector of colors to maximize label contrast.

Usage

invertLabelColor(colors, threshold = 0.65)

Arguments

colors

vector of colors

threshold

black | white threshold

Value

vector of label colors

Author(s)

D.E. Beaudette

Examples

# test with shades of grey
s <- seq(0, 1, by = 0.05)
cols <- grey(s)
soilPalette(cols, lab = as.character(s))

# test with 10YR x/3
m <- sprintf('10YR %s/3', 1:8)
cols <- parseMunsell(m)
soilPalette(cols, lab = m)

Check for "empty" profiles in a SoilProfileCollection

Description

"Empty" profiles are used as placeholders for positions in a SoilProfileCollection These profiles result from operations that remove or extract portions of horizons from source profiles.

Usage

## S4 method for signature 'SoilProfileCollection'
isEmpty(object, ...)

Arguments

object

A SoilProfileCollection

...

Additional arguments not used.

Details

In a SoilProfileCollection an empty profile occurs when it has one horizon, with NA top and bottom depths. Generally all non-profile ID site and horizon-level values are all also NA, but only the depths are checked by isEmpty().

Value

logical. Vector of length equal to number of profiles in object. Returns TRUE when a profile has one horizon with NA top and bottom depths


Soil Morphologic Data from Jacobs et al. 2002.

Description

Select soil morphologic data from "Redoximorphic Features as Indicators of Seasonal Saturation, Lowndes County, Georgia". This is a useful sample dataset for testing the analysis and visualization of redoximorphic features.

Usage

data(jacobs2000)

Format

A SoilProfileCollection object.

References

Jacobs, P. M., L. T. West, and J. N. Shaw. 2002. Redoximorphic Features as Indicators of Seasonal Saturation, Lowndes County, Georgia. Soil Sci. Soc. Am. J. 66:315-323. doi:doi:10.2136/sssaj2002.3150

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

# load
data(jacobs2000)

# basic plot
par(mar=c(0, 1, 3, 1.5))
plotSPC(jacobs2000, name='name', color='matrix_color', width=0.3)
# add concentrations
addVolumeFraction(jacobs2000, 'concentration_pct',
col = jacobs2000$concentration_color, pch = 16, cex.max = 0.5)

# add depletions
plotSPC(jacobs2000, name='name', color='matrix_color', width=0.3)
addVolumeFraction(jacobs2000, 'depletion_pct',
col = jacobs2000$depletion_color, pch = 16, cex.max = 0.5)

# time saturated
plotSPC(jacobs2000, color='time_saturated', cex.names=0.8, col.label = 'Time Saturated')

# color contrast: matrix vs. concentrations
cc <- colorContrast(jacobs2000$matrix_color_munsell, jacobs2000$concentration_munsell)
cc <- na.omit(cc)

cc <- cc[order(cc$dE00), ]
cc <- unique(cc)

par(bg='black', fg='white')
colorContrastPlot(cc$m1[1:10], cc$m2[1:10], labels = c('matrix', 'concentration'))
colorContrastPlot(cc$m1[11:21], cc$m2[11:21], labels = c('matrix', 'concentration'))


# color contrast: depletion vs. concentrations
cc <- colorContrast(jacobs2000$depletion_munsell, jacobs2000$concentration_munsell)
cc <- na.omit(cc)

cc <- cc[order(cc$dE00), ]
cc <- unique(cc)

par(bg='black', fg='white')
colorContrastPlot(cc$m1, cc$m2, labels = c('depletion', 'concentration'))

Create Representative Soil Profiles via L1 Estimator

Description

The L1 estimator, or geometric median, is a multivariate generalization of the (univariate) median concept. This function performs a multivariate aggregation (via L1 estimator) according to a suite of ratio-scale soil properties. The L1 estimator is applied to soil profile data that have been sliced to a 1-depth-unit basis. Data should be well stratified by groups defined in fm, otherwise the L1 median may not make any sense.

See the L1 Profiles Tutorial for additional examples.

Usage

L1_profiles(
  x,
  fm,
  basis = 1,
  method = c("regex", "simple", "constant"),
  maxDepthRule = c("max", "min"),
  maxDepthConstant = NULL
)

Arguments

x

SoilProfileCollection object

fm

formula, for example: group ~ p1 + p2 + p3, where "group" is a site-level grouping variable, and "p1", "p2", and "p3" are horizon level variables

basis

positive integer, aggregation basis (e.g. 1 for 1-depth-unit intervals). Values other than 1 are not currently supported.

method

soil depth evaluation method: "regex" for regular expression, "simple", or "constant". See details.

maxDepthRule

maximum depth rule: "max" or "min" See details.

maxDepthConstant

positive integer, maximum depth when maxDepthRule = 'constant'

Details

See this related tutorial for additional examples. The method, maxDepthRule, and maxDepthConstant arguments set the maximum depth (over the entire collection) of analysis used to build "L1 profiles". The following rules are available:

  • method = 'regex' uses pattern matching on horizon designations (note that hzdesgnname metadata must be set with hzdesgnname(x) <- 'columnname')

  • method = 'simple' uses min or max as applied to x, no accounting for non-soil horizons (e.g. Cr or R)

  • method = 'constant' uses a fixed depth value supplied by maxDepthConstant

The maxDepthRule argument sets depth calculation constraint, applied to soil depths computed according to method (min or max).

Value

a SoilProfileCollection object

Note

This function requires the Gmedian package.

References

Cardot, H., Cenac, P. and Zitt, P-A. (2013). Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli, 19, 18-43.


Get the number of profiles in a SoilProfileCollection

Description

Get the number of profiles in a SoilProfileCollection

Usage

## S4 method for signature 'SoilProfileCollection'
length(x)

Arguments

x

a SoilProfileCollection


Ranking Systems for USDA Taxonomic Particle-Size and Substitute Classes of Mineral Soils

Description

Generate a lookup table of USDA Particle-Size and Substitute Classes names, ranked according to approximate particle size

Usage

lookup_taxpartsize()

Value

A data.frame with a rank column, taxonomic family particle size class, and a flag for contrasting.

Author(s)

Stephen Roecker

References

Field Book for Describing and Sampling Soils, version 3.0

See Also

hz_to_taxpartsize(), texture_to_taxpartsize(), SoilTextureLevels()

Examples

# class codes
lu <- lookup_taxpartsize()

idx <- lu$contrasting == FALSE

lu$taxpartsize[idx]

lu$rank[as.integer(lu$taxpartsize)[idx]]

Eliminate duplicate instances of profile IDs in a list of SoilProfileCollections

Description

@description Experimental function to "clean" list input where duplicates exist (that would otherwise prevent pbindlist). Useful for queries that may have overlapping instances of the same data, for instance a list of SoilProfileCollections where each list element contains profiles gathered from a set of (potentially overlapping) extents.

Usage

lunique(l)

Arguments

l

A list of SoilProfileCollections.

Value

A list of SoilProfileCollections, with duplicate profile IDs removed.

Author(s)

Andrew G. Brown

Examples

data(sp5)

# EXAMPLE #1 -- resolving overlap

# 6 profiles in four sets, and 5,6,7 are missing
input <- lapply(list(c(1,3,4), c(2,2,3), NA, c(8,9,1)), function(idx) {
      if(!all(is.na(idx)))
       sp5[idx,]
})

output <- lunique(input)

# 6 profiles are in final SPC; 5,6,7 are missing
match(profile_id(pbindlist(output)), profile_id(sp5))

# EXAMPLE #2 -- exact duplicates

# deliberately duplicate an SPC
sp5_2 <- sp5
res <- lunique(list(sp5, sp5_2))

# the number of profiles in first element is equal to number in sp5
length(res[[1]]) == length(sp5)

# second list element contains NA b/c all uniques are in #1
res[[2]]

Get the maximum bottom depth in a SoilProfileCollection

Description

Get the deepest depth of description out of all profiles in a SoilProfileCollection. Data missing one or more of: bottom depth, profile ID, or any optional attribute are omitted using complete.cases.

Usage

## S4 method for signature 'SoilProfileCollection'
max(x, v = NULL, na.rm = TRUE)

Arguments

x

a SoilProfileCollection

v

optional: horizon-level column name to refine calculation

na.rm

remove NA? default: TRUE


Retrieve metadata from SoilProfileCollection

Description

Get metadata from SoilProfileCollection. Result is a list. Two entries (aqp_df_class, depth_units) should not be edited in the metadata list directly. There are methods that facilitate changing them – and propagating their changes throughout the collection. Otherwise, metadata list is a free-form slot used to store arbitrary information about the data, how it was collected, citations, etc.

Usage

## S4 method for signature 'SoilProfileCollection'
metadata(object)

## S4 replacement method for signature 'SoilProfileCollection'
metadata(object) <- value

Arguments

object

A SoilProfileCollection

value

A named list (see examples)

Examples

data(sp5)

# replace default metadata with itself
metadata(sp5) <- metadata(sp5)

# set new metadata attribute value
metadata(sp5)$newvalue <- 'foo'

# get metadata attribute
metadata(sp5)$newvalue

Get the minimum bottom depth in a SoilProfileCollection

Description

Get the shallowest depth of description out of all profiles in a SoilProfileCollection. Data missing one or more of: bottom depth, profile ID, or any optional attribute are omitted using complete.cases.

Usage

## S4 method for signature 'SoilProfileCollection'
min(x, v = NULL, na.rm = TRUE)

Arguments

x

a SoilProfileCollection

v

optional: a vector of horizon attribute names to refine calculation

na.rm

remove NA? default: TRUE


Missing Data Grid

Description

Generate a levelplot of missing data from a SoilProfileCollection object.

Usage

missingDataGrid(
  s,
  max_depth,
  vars,
  filter.column = NULL,
  filter.regex = NULL,
  cols = NULL,
  ...
)

Arguments

s

a SoilProfileCollection object

max_depth

integer specifying the max depth of analysis

vars

character vector of column names over which to evaluate missing data

filter.column

a character string naming the column to apply the filter REGEX to

filter.regex

a character string with a regular expression used to filter horizon data OUT of the analysis

cols

a vector of colors

...

additional arguments passed on to levelplot

Details

This function evaluates a ⁠missing data fraction⁠ based on slice-wise evaluation of named variables in a SoilProfileCollection object.

Value

A data.frame describing the percentage of missing data by variable.

Note

A lattice graphic is printed to the active output device.

Author(s)

D.E. Beaudette

See Also

slice

Examples

# 10 random profiles
set.seed(10101)
s <- lapply(as.character(1:10), random_profile)
s <- do.call('rbind', s)

# randomly sprinkle some missing data
s[sample(nrow(s), 5), 'p1'] <- NA
s[sample(nrow(s), 5), 'p2'] <- NA
s[sample(nrow(s), 5), 'p3'] <- NA

# set all p4 and p5 attributes of `soil 1' to NA
s[which(s$id == '1'), 'p5'] <- NA
s[which(s$id == '1'), 'p4'] <- NA

# upgrade to SPC
depths(s) <- id ~ top + bottom

# plot missing data via slicing + levelplot
missingDataGrid(
  s,
  max_depth = 100,
  vars = c('p1', 'p2', 'p3', 'p4', 'p5'),
  main='Missing Data Fraction'
)

Mix Munsell Colors via Spectral Library

Description

Simulate mixing of colors in Munsell notation, similar to the way in which mixtures of pigments operate.

Usage

mixMunsell(
  x,
  w = rep(1, times = length(x))/length(x),
  mixingMethod = c("exact", "reference", "estimate", "adaptive"),
  n = 1,
  keepMixedSpec = FALSE,
  distThreshold = 0.025,
  ...
)

Arguments

x

vector of colors in Munsell notation

w

vector of proportions, can sum to any number

mixingMethod

approach used to simulate a mixture:

  • exact: simulate a subtractive mixture of pigments, color conversion via CIE1931 color-matching functions (see details)

  • reference: simulate a subtractive mixture of pigments, selecting n closest reference spectra from munsell.spectra.wide (requires gower package)

  • estimate: closest Munsell chip to a weighted mean of CIELAB coordinates (fastest)

  • adaptive: use exact method when possible, falling-back to estimate (weighted mean of CIELAB coordinates) otherwise

n

number of closest matching color chips (mixingMethod = reference only)

keepMixedSpec

keep weighted geometric mean spectra, final result is a list (mixingMethod = reference only)

distThreshold

spectral distance used to compute scaledDistance, default value is based on an analysis of spectral distances associated with adjacent Munsell color chips. This argument is only used with mixingMethod = 'reference'.

...

additional arguments to spec2Munsell

Details

See the expanded tutorial for examples.

An accurate simulation of pigment mixtures ("subtractive" color mixtures) is incredibly complex due to factors that aren't easily measured or controlled: pigment solubility, pigment particle size distribution, water content, substrate composition, and physical obstruction to name a few. That said, it is possible to simulate reasonable, subtractive color mixtures given a reference spectra library (350-800nm) and some assumptions about pigment qualities and lighting. For the purposes of estimating a mixture of soil colors (these are pigments after all) we can relax these assumptions and assume a standard light source. The only missing piece is the spectral library for all Munsell chips in our color books.

Thankfully, Scott Burns has outlined the entire process, and Paul Centore has provided a Munsell color chip reflectance spectra library. The estimation of a subtractive mixture of soil colors can proceed as follows:

  1. look up the associated spectra for each color in x

  2. compute the weighted (w argument) geometric mean of the spectra

  3. convert the spectral mixture to the closest Munsell color via:

  • search for the closest n matching spectra in the reference library (mixtureMethod = 'reference')

  • direct conversion of spectra to closest Munsell color via spec2Munsell() (mixtureMethod = 'exact')

  1. suggest resulting Munsell chip(s) as the best candidate for a simulated mixture

Key assumptions include:

  • similar particle size distribution

  • similar mineralogy (i.e. pigmentation qualities)

  • similar water content.

For the purposes of estimating (for example) a "mixed soil color within the top 18cm of soil" these assumptions are usually valid. Again, these are estimates that are ultimately "snapped" to the nearest chip and not do not need to approach the accuracy of paint-matching systems.

A message is printed when scaledDistance is larger than 1.

Value

A data.frame with the closest matching Munsell color(s):

  • munsell: Munsell notation of the n-closest spectra

  • distance: spectral (Gower) distance to the n-closest spectra

  • scaledDistance: spectral distance scaled by distThreshold

  • mixingMethod: method used for each mixture

When keepMixedSpec = TRUE then a list:

  • mixed: a data.frame containing the same elements as above

  • spec: spectra for the 1st closest match

Author(s)

D.E. Beaudette

References

Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and Technology (pp. 32-96). North-Holland.

See Also

munsell.spectra


Calculate the minimum thickness requirement for Mollic epipedon

Description

Utilize horizon depths, designations and textures in a profile to estimate the thickness requirement for the Mollic or Umbric epipedon, per criterion 6 in the U.S. Keys to Soil Taxonomy (12th Edition).

Usage

mollic.thickness.requirement(
  p,
  hzdesgn = hzdesgnname(p, required = TRUE),
  texcl.attr = hztexclname(p, required = TRUE),
  clay.attr = hzmetaname(p, "clay", required = TRUE),
  truncate = TRUE
)

Arguments

p

A single-profile SoilProfileCollection.

hzdesgn

Column in horizon table containing designations. Default: guessHzDesgnName(p)

texcl.attr

Column in horizon table containing texture classes. Default: guessHzTexClName(p)

clay.attr

Column in horizon table containing clay contents. Default: guessHzAttrName(p, 'clay', c('total','_r'))

truncate

Should sliding scale (Criterion 6C) results be truncated to 18 to 25cm interval? (Experimental; Default: TRUE)

Value

A unit length numeric vector containing Mollic or Umbric epipedon minimum thickness requirement.

Author(s)

Andrew G. Brown

Examples

# construct a fake profile
spc <- data.frame(id=1, taxsubgrp = "Lithic Haploxeralfs",
                  hzname   = c("A","AB","Bt","BCt","R"),
                  hzdept   = c(0,  20, 32, 42,  49),
                  hzdepb   = c(20, 32, 42, 49, 200),
                  prop     = c(18, 22, 28, 24,  NA),
                  texcl    = c("l","l","cl", "l","br"),
                  d_value  = c(5,   5,  5,  6,  NA),
                  m_value  = c(2.5, 3,  3,  4,  NA),
                  m_chroma = c(2,   3,  4,  4,  NA))

# promote to SoilProfileCollection
depths(spc) <- id ~ hzdept + hzdepb
hzdesgnname(spc) <- 'hzname'
hztexclname(spc) <- 'texcl'

# print results in table
data.frame(id = spc[[idname(spc)]],
           thickness_req = mollic.thickness.requirement(spc, clay.attr='prop'),
           thickness_req_nobound = mollic.thickness.requirement(spc,
                                        clay.attr='prop', truncate=FALSE))

Munsell to sRGB Lookup Table for Common Soil Colors

Description

A lookup table of interpolated Munsell color chips for common soil colors.

Usage

data(munsell)

Format

A data.frame with 8825 rows.

  • hue: Munsell Hue, upper case

  • value: Munsell Value

  • chroma: Munsell Chroma

  • r: sRGB "red" value (0-1)

  • g: sRGB "green" value (0-1)

  • b: sRGB "blue" value (0-1)

  • L: CIELAB "L" coordinate

  • A: CIELAB "A" coordinate

  • B: CIELAB "B" coordinate

Details

See munsell2rgb for conversion examples. Values are referenced to the D65 standard illuminant.

Source

Color chip XYZ values: https://www.rit.edu/science/munsell-color-science-lab-educational-resources#munsell-renotation-data

References

  • Color conversion equations

    • http://www.brucelindbloom.com/index.html?ColorCalcHelp.html

  • Methods used to generate this table

    • http://dx.doi.org/10.1016/j.cageo.2012.10.020

Examples

data(munsell)

Spectral Library of Munsell Colors

Description

The original database "SpectralReflectancesOf2007MunsellBookOfColorGlossy.txt" was provided by Paul Centore and downloaded July, 2020. Reflectance values for odd chroma have been interpolated from adjacent chips. See aqp/misc/utils/Munsell/ for the entire set of processing steps.

Munsell value typically ranges from 2-9, and chroma from 1-12. Ranges vary by hue. Run aqp:::.summarizeMunsellSpectraRanges() for a detailed listing by hue.

The original database contains the following description:

This file contains spectral reflectance measurements of X-Rite's 2007 Munsell Book of Color (Glossy Finish). The measurements were made in 2012 with a ColorMunki spectrophotometer. The first column is the Munsell name. The remaining columns give reflectance values for 380 nm to 730 nm, in steps of 10 nm. The reflectance is a value between 0 (indicating that no light at that wavelength is reflected) and 1 (indicating that all the light at that wavelength is reflected). Occasionally an entry is slightly greater than 1. The likely cause is random variability, and those entries can be adjusted to 1 with negligible loss. In all, 1485 colour samples were measured. Researchers are invited to analyze the data in this file.

Usage

data(munsell.spectra)

Format

A data frame with 89496 rows and 10 variables:

munsell

munsell color

hue

hue component

value

value component

chroma

chroma component

wavelength

wavelength (nm)

reflectance

reflectance

References

Centore, Paul. Colour Tools for Painters. https://www.munsellcolourscienceforpainters.com/.


Convert Munsell Color Notation to other Color Space Coordinates (sRGB and CIELAB)

Description

Color conversion based on a look-up table of common soil colors.

Usage

munsell2rgb(
  the_hue,
  the_value,
  the_chroma,
  alpha = 1,
  maxColorValue = 1,
  return_triplets = FALSE,
  returnLAB = FALSE
)

Arguments

the_hue

a vector of one or more more hues, upper-case (e.g. '10YR')

the_value

a vector of one or more values (e.g. '4')

the_chroma

a vector of one or more chromas (e.g. '6'), may be NA for neutral hues

alpha

numeric, transparency setting used when return_triplets = FALSE and returnLAB = FALSE

maxColorValue

maximum sRGB color value, typically 1 (see rgb)

return_triplets

logical, return sRGB coordinates (range 0-1) instead of standard hex notation of sRGB (e.g. '#8080B')

returnLAB

logical, return CIELAB coordinates (D65 illuminant)

Details

This function is vectorized without recycling: i.e. the length of each argument must be the same. Both functions will pad output with NA if there are any NA present in the inputs.

Neutral hues are approximated by greyscale shades ranging from 20\

Gley soil colors that are missing a chroma will not be correctly interpreted. Consider using a chroma of 1. Non-standard Munsell notation (e.g. '7.9YR 2.7/2.0') can be matched (nearest-neighbor, no interpolation) to the closest color within the munsell sRGB/CIELAB look-up table via getClosestMunsellChip(). A more accurate estimate of sRGB values from non-standard notation can be achieved with the munsellinterpol package.

See examples below.

Value

A vector of R colors is returned that is the same length as the input data. When return_triplets = TRUE and/or returnLAB = TRUE, then a data.frame (of sample length as input) is returned.

Note

Care should be taken when using the resulting sRGB values; they are close to their Munsell counterparts, but will vary based on your monitor and ambient lighting conditions. Also, the value used for maxColorValue will affect the brightness of the colors. Th default value (1) will usually give acceptable results, but can be adjusted to force the colors closer to what the user thinks they should look like.

Author(s)

D.E. Beaudette

References

Examples

# neutral hues (N) can be defined with chroma of 0 or NA 
g <- expand.grid(hue='N', value = 2:8, chroma = 0, stringsAsFactors = FALSE)
(m <- munsell2rgb(g$hue, g$value, g$chroma))
soilPalette(m)

# back-transform to Munsell notation
col2Munsell(t(col2rgb(m)) / 255)


# basic example
d <- expand.grid(hue = '10YR', value = 2:8, chroma = 1:8, stringsAsFactors = FALSE)
d$color <- with(d, munsell2rgb(hue, value, chroma))

# similar to the 10YR color book page
plot(value ~ chroma, data = d, col = d$color, pch = 15, cex = 3, las = 1)

# multiple pages of hue:
hues <- c('2.5YR', '5YR', '7.5YR', '10YR')
d <- expand.grid(
  hue = hues, 
  value = c(2, 2.5, 3:8), 
  chroma = seq(2, 8, by = 2), 
  stringsAsFactors = FALSE
)
# convert Munsell -> sRGB
d$color <- with(d, munsell2rgb(hue, value, chroma))

# extract CIELAB coordinates
with(d, munsell2rgb(hue, value, chroma, returnLAB = TRUE))

# plot: note that we are setting panel order from red --> yellow
library(lattice)
xyplot(
  value ~ factor(chroma) | factor(hue, levels = hues),
  main = "Common Soil Colors", layout = c(4, 1), scales = list(alternating = 1),
  strip = strip.custom(bg = grey(0.85)),
  data = d, as.table = TRUE, subscripts = TRUE, 
  xlab = 'Chroma', ylab = 'Value',
  panel = function(x, y, subscripts, ...) {
    panel.xyplot(x, y, pch = 15, cex = 4, col = d$color[subscripts])
  }
)



# convert a non-standard color to closest "chip" in `munsell` look-up table
getClosestMunsellChip('7.9YR 2.7/2.0', convertColors = FALSE)

# convert directly to hex notation of sRGB
getClosestMunsellChip('7.9YR 2.7/2.0')

Merge Munsell Hue, Value, Chroma converted to sRGB & CIELAB into a SoilProfileCollection

Description

Convert Munsell hue, value and chroma into sRGB (rgb_R, rgb_G, rgb_B) and CIELAB (lab_L, lab_A, lab_B) color coordinates using munsell2rgb. The converted values are stored in the horizons() slot unless as.spc is FALSE, in which case the results are combined with profile and horizon ID columns and returned as the data.frame subclass used by the SPC.

Usage

## S4 method for signature 'SoilProfileCollection'
munsell2spc(
  object,
  hue = "hue",
  value = "value",
  chroma = "chroma",
  .data = NULL,
  as.spc = TRUE
)

Arguments

object

A SoilProfileCollection

hue

Column name containing numeric hue values. Default: "hue"

value

Column name containing numeric value values. Default: "value"

chroma

Column name containing numeric chroma values. Default: "chroma"

.data

Optional: a character vector of equal length to number of horizons (containing Munsell notation), or a column name in the horizon data OR a data.frame containing three columns (names specified in hue, value, chroma)

as.spc

Return a data.frame-like object with ID columns?

Value

A SoilProfileCollection or data.frame-like object

See Also

parseMunsell rgb2munsell munsell2rgb

Examples

data(sp3)
depths(sp3) <- id ~ top + bottom

# inspect input data
horizons(sp3)[,c("hue","value","chroma")]

# do color conversions to sRGB and LAB, join into horizon data
sp3 <- munsell2spc(sp3)

# plot rgb "R" coordinate by horizon
plot(sp3, color = "rgb_R")

# plot lab "A" coordinate by horizon
plot(sp3, color = "lab_A")

# note that `lab_A` values do not exactly match the original `A` values
# this is because `lab_A` was computed from the (field determined) Munsell color notation,
# while `A` was directly measured in the lab by colorimeter
plot(sp3$A, sp3$lab_A, xlab = 'Measured', ylab = 'Converted from Field Observed Munsell')

Munsell Hue Position Reference

Description

Position data for the 40 standard Munsell hues (and neutral). Data include angular positions (compass-style, origin at ⁠[x = 0, y = 1]⁠, CW rotation) and Cartesian coordinates on the unit circle.

Usage

data(munsellHuePosition)

Format

An object of class data.frame with 41 rows and 4 columns.

References

Munsell book of color. 1976. Macbeth, a Division of Kollmorgen Corp., Baltimore, MD.


Transform a SPC (by profile) with a set of expressions

Description

mutate_profile() is a function used for transforming SoilProfileCollections. Each expression is applied to site or horizon level attributes of individual profiles. This distinguishes this function from transform, which is applied to all values in a collection, regardless of which profile they came from.

Usage

mutate_profile(object, ..., col_names = NULL, horizon_level = NULL)

mutate_profile_raw(object, expr, col_names = NULL, horizon_level = NULL)

Arguments

object

A SoilProfileCollection

...

A set of comma-delimited R expressions that resolve to a transformation to be applied to a single profile e.g mutate_profile(hzdept = max(hzdept) - hzdept)

col_names

character. Optional column names. Should match the number of expressions in ....

horizon_level

logical. If TRUE results of expressions are added to the SoilProfileCollection's horizon slot, if FALSE the results are added to the site slot. If NULL (default) the results are stored in the site or horizon slot based on the number of rows in each slot compared to the length of the result calculated from the first and last profile in the collection.

expr

A list of expressions in terms of column names in site or horizon table of object

Details

If the length an expression's result matches the number of horizons, the result is stored as a horizon-level variable. If the result has length 1, it is stored as a site-level variable. In the ambiguous case where the first and last profile have only one horizon, the results are stored in the horizon slot by default. To force results into site slot use horizon_level = FALSE.

Value

A SoilProfileCollection.

Author(s)

Andrew G. Brown.

Examples

data(sp4)
depths(sp4) <- id ~ top + bottom

mutate_profile(sp4, clay_wtd_average = weighted.mean(clay, bottom - top))

data(jacobs2000)

set.seed(123)

## col_names allows for column names to be calculated
x <- mutate_profile(jacobs2000, bottom - top / sum(bottom - top),
                    col_names = paste0("relthk", floor(runif(1, 0, 100))))
x$relthk28

# mutate_profile_raw allows for lists of expressions to be evaluated
master_desgn <- c("O", "A", "E", "B", "C", "R", "L", "M")
thk_names <- paste0("thk_", master_desgn)

# calculate thickness for each horizon
x$thk <- x$bottom - x$top

## construct an arbitrary number of expressions using variable inputs
ops <- lapply(master_desgn, function(x) {
  substitute(sum(thk[grepl(PATTERN, name)], na.rm = TRUE), list(PATTERN = x))
})
names(ops) <- thk_names

# do mutation
y <- mutate_profile_raw(x, ops)

site(y)[c(idname(y), thk_names)]

Get names of columns in site and horizons table

Description

Get names of columns in site and horizons table of a SoilProfileCollection.

Usage

## S4 method for signature 'SoilProfileCollection'
names(x)

Arguments

x

a SoilProfileCollection


Numerical Classification of Soil Profiles

Description

Replacement for profile_compare().

Performs a numerical comparison of soil profiles using named properties, based on a weighted, summed, depth-segment-aligned dissimilarity calculation.

Variability in soil depth can interfere significantly with the calculation of between-profile dissimilarity– what is the numerical “distance” (or dissimilarity) between a slice of soil from profile A and the corresponding, but missing, slice from a shallower profile B? Gower's distance metric would yield a NULL distance, despite the fact that intuition suggests otherwise: shallower soils should be more dissimilar from deeper soils. For example, when a 25 cm deep profile is compared with a 50 cm deep profile, numerical distances are only accumulated for the first 25 cm of soil (distances from 26 - 50 cm are NULL). When summed, the total distance between these profiles will generally be less than the distance between two profiles of equal depth. Our algorithm has an option (setting replace_na=TRUE) to replace NULL distances with the maximum distance between any pair of profiles for the current depth slice. In this way, the numerical distance between a slice of soil and a corresponding slice of non-soil reflects the fact that these two materials should be treated very differently (i.e. maximum dissimilarity).

This alternative calculation of dissimilarities between soil and non-soil slices solves the problem of comparing shallow profiles with deeper profiles. However, it can result in a new problem: distances calculated between two shallow profiles will be erroneously inflated beyond the extent of either profile's depth. Our algorithm has an additional option (setting add_soil_flag=TRUE) that will preserve NULL distances between slices when both slices represent non-soil material. With this option enabled, shallow profiles will only accumulate mutual dissimilarity to the depth of the deeper profile.

Slices are classified as 'soil' down to the maximum depth to which at least one of variables used in the dissimilarity calculation is not NA. This will cause problems when profiles within a collection contain all NAs within the columns used to determine dissimilarity. An approach for identifying and removing these kind of profiles is presented in the examples section below.

A notice is issued if there are any NA values within the matrix used for distance calculations, as these values are optionally replaced by the max dissimilarity.

Our approach builds on the work of (Moore, 1972) and the previously mentioned depth-slicing algorithm.

Usage

NCSP(
  x,
  vars,
  fm = NULL,
  weights = rep(1, times = length(vars)),
  maxDepth = max(x),
  k = 0,
  isColor = FALSE,
  rescaleResult = FALSE,
  progress = TRUE,
  verbose = TRUE,
  returnDepthDistances = FALSE
)

Arguments

x

SoilProfileColection object, should be pre-filtered to remove profiles with horizon depth logic, see HzDepthLogicSubset

vars

character vector, names of horizon attributes to use in the classification

fm

formula, formula as specified to dice(), not yet implemented

weights

numeric vector, same length as vars: variable importance weights, need not sum to 1

maxDepth

numeric, maximum depth of analysis

k

numeric, weighting coefficient, see examples

isColor

logical: variables represent color, should be CIELAB coordinates (D65 illuminant), weights are ignored. Variables should be named L, A, B in specified in that order.

rescaleResult

logical, distance matrix is rescaled based on max(D)

progress

logical, report progress

verbose

logical, extra output messages

returnDepthDistances

logical, return a list of distances by depth slice

Note

NCSP() will overwrite the removed.profiles metadata from x.

Author(s)

Dylan E. Beaudette and Jon Maynard

References

  • J.J Maynard, S.W. Salley, D.E. Beaudette, J.E Herrick. Numerical soil classification supports soil identification by citizen scientists using limited, simple soil observations. Soil Sci. Soc. Am. J. 2020; 84: 1675-1692. doi:10.1002/saj2.20119.

  • D.E. Beaudette, P. Roudier, A.T. O'Geen, Algorithms for quantitative pedology: A toolkit for soil scientists, Computers & Geosciences, Volume 52, 2013, Pages 258-268, ISSN 0098-3004, doi:10.1016/j.cageo.2012.10.020.

  • Moore, A.; Russell, J. & Ward, W. Numerical analysis of soils: A comparison of three soil profile models with field classification. Journal of Soil Science, 1972, 23, 194-209.

See Also

dice(), cluster::daisy(), compareSites()


Get the number of horizons in a SoilProfileCollection

Description

Get the number of horizons in a SoilProfileCollection

Usage

## S4 method for signature 'SoilProfileCollection'
nrow(x)

Arguments

x

a SoilProfileCollection


Example Output from soilDB::fetchOSD()

Description

An example SoilProfileCollection object created by soilDB::fetchOSD(), derived from the Cecil, Appling, and Bonneau Official Series Descriptions.

Usage

data(osd)

Format

A SoilProfileCollection


Lattice Panel Function for Soil Profiles

Description

Panel function for plotting grouped soil property data, along with upper and lower estimates of uncertainty.

This function can be used to replace panel.superpose when plotting depth function data. When requested, contributing fraction data are printed using colors the same color as corresponding depth function lines unless a single color value is given via cf.col.

This function is not able to apply transformations (typically log = 10) applied in the scales argument to xyplot to upper/lower bounds. These will have to be manually applied. See examples.

Usage

panel.depth_function(
  x,
  y,
  id,
  upper = NA,
  lower = NA,
  subscripts = NULL,
  groups = NULL,
  sync.colors = FALSE,
  cf = NA,
  cf.col = NA,
  cf.interval = 20,
  ...
)

prepanel.depth_function(
  x,
  y,
  upper = NA,
  lower = NA,
  subscripts,
  groups = NULL,
  ...
)

Arguments

x

x values (generated by calling lattice function)

y

y values (generated by calling lattice function)

id

vector of id labels, same length as x and y–only required when plotting segments (see Details section)

upper

vector of upper confidence envelope values

lower

vector of lower confidence envelope values

subscripts

paneling indices (generated by calling lattice function)

groups

grouping data (generated by calling lattice function)

sync.colors

optionally sync the fill color within the region bounded by (lower–upper) with the line colors

cf

optionally annotate contributing fraction data at regular depth intervals see slab

cf.col

optional color for contributing fraction values, typically used to override the line color

cf.interval

number of depth units to space printed contributing fraction values

...

further arguments to lower-level lattice plotting functions, see below

Author(s)

D.E. Beaudette

See Also

sp1, slice, slab

Examples

library(lattice)
data(sp1)

# 1. plotting mechanism for step-functions derived from soil profile data
xyplot(
  cbind(top, bottom) ~ prop,
  data = sp1,
  id = sp1$id,
  panel = panel.depth_function,
  ylim = c(250, -10),
  scales = list(y = list(tick.number = 10)),
  xlab = 'Property',
  ylab = 'Depth (cm)',
  main = 'panel.depth_function() demo'
)

# 1.1 include groups argument to leverage lattice styling framework
sp1$group <- factor(sp1$group, labels = c('Group 1', 'Group2'))

xyplot(
  cbind(top, bottom) ~ prop,
  groups = group,
  data = sp1,
  id = sp1$id,
  panel = panel.depth_function,
  ylim = c(250, -10),
  scales = list(y = list(tick.number = 10)),
  xlab = 'Property',
  ylab = 'Depth (cm)',
  main = 'panel.depth_function() demo',
  auto.key = list(
    columns = 2,
    points = FALSE,
    lines = TRUE
  ),
  par.settings = list(superpose.line = list(col = c(
    'Orange', 'RoyalBlue'
  )))
)


# more complex examples, using step functions with grouped data
# better looking figures with less customization via tactile package
if(requireNamespace('tactile')) {
  
  library(data.table)
  library(lattice)
  library(tactile)
  
  # example data
  data(sp6)
  
  # a single profile
  x <- sp6[1:5, ]
  
  # wide -> long format
  x.long <- data.table::melt(
    data.table::data.table(x), 
    id.vars = c('id', 'top', 'bottom'), 
    measure.vars = c('sand', 'silt', 'clay')
  )
  
  # (optional) convert back to data.frame
  x.long <- as.data.frame(x.long)
  
  # three variables sharing a common axis
  # factor levels set by melt()
  xyplot(
    cbind(top, bottom) ~ value | id,
    groups = variable,
    data = x.long,
    id = x.long$id,
    ylim = c(200, -5), xlim = c(10, 60),
    scales = list(alternating = 1, y = list(tick.number = 10)),
    par.settings = tactile.theme(superpose.line = list(lwd = 2)),
    xlab = 'Sand, Silt, Clay (%)',
    ylab = 'Depth (cm)',
    panel = panel.depth_function,
    auto.key = list(columns = 3, lines = TRUE, points = FALSE),
    asp = 1.5
  )
  
  
  # all profiles
  x <- sp6
  
  # wide -> long format
  x.long <- data.table::melt(
    data.table::data.table(x), 
    id.vars = c('id', 'top', 'bottom'), 
    measure.vars = c('sand', 'silt', 'clay')
  )
  
  # (optional) convert back to data.frame
  x.long <- as.data.frame(x.long)
  
  # three variables sharing a common axis
  # factor levels set by melt()
  xyplot(
    cbind(top, bottom) ~ value | id,
    groups = variable,
    data = x.long,
    id = x.long$id,
    ylim = c(200, -5), xlim = c(0, 70),
    scales = list(alternating = 1, y = list(tick.number = 10)),
    par.settings = tactile.theme(superpose.line = list(lwd = 2)),
    xlab = 'Sand, Silt, Clay (%)',
    ylab = 'Depth (cm)',
    panel = panel.depth_function,
    auto.key = list(columns = 3, lines = TRUE, points = FALSE),
    as.table = TRUE
  )
  
  xyplot(
    cbind(top, bottom) ~ value,
    groups = variable,
    data = x.long,
    id = x.long$id,
    ylim = c(200, -5), xlim = c(0, 70),
    scales = list(alternating = 1, y = list(tick.number = 10)),
    par.settings = tactile.theme(superpose.line = list(lwd = 2)),
    xlab = 'Sand, Silt, Clay (%)',
    ylab = 'Depth (cm)',
    panel = panel.depth_function,
    auto.key = list(columns = 3, lines = TRUE, points = FALSE),
    as.table = TRUE
  )
  
  xyplot(
    cbind(top, bottom) ~ value | variable,
    groups = variable,
    data = x.long,
    id = x.long$id,
    ylim = c(200, -5), xlim = c(0, 70),
    scales = list(alternating = 1, y = list(tick.number = 10)),
    par.settings = tactile.theme(superpose.line = list(lwd = 2)),
    xlab = 'Sand, Silt, Clay (%)',
    ylab = 'Depth (cm)',
    panel = panel.depth_function,
    auto.key = list(columns = 3, lines = TRUE, points = FALSE),
    as.table = TRUE
  )
  
  
  xyplot(
    cbind(top, bottom) ~ value | variable,
    data = x.long,
    id = x.long$id,
    ylim = c(200, -5), xlim = c(0, 70),
    scales = list(alternating = 1, y = list(tick.number = 10)),
    par.settings = tactile.theme(superpose.line = list(lwd = 2)),
    xlab = 'Sand, Silt, Clay (%)',
    ylab = 'Depth (cm)',
    panel = panel.depth_function,
    auto.key = list(columns = 3, lines = TRUE, points = FALSE),
    as.table = TRUE
  )
  
  
}

Parse Munsell Color Notation

Description

Split Munsell color notation into "hue", "value", and "chroma", with optional conversion to sRGB hex notation, sRGB coordinates, and CIELAB coordinates. Conversion is performed by munsell2rgb.

Usage

parseMunsell(munsellColor, convertColors = TRUE, delim = NA, ...)

Arguments

munsellColor

character vector of Munsell colors (e.g. c('10YR 3/4', '5YR 4/6'))

convertColors

logical, convert colors to sRGB hex notation, sRGB coordinates, CIELAB coordinates

delim

optional, specify the type of delimiter used between value and chroma parts of the Munsell code. By default ":", ",:, "'", and "/" are supported.

...

additional arguments to munsell2rgb

Value

a data.frame object

Author(s)

P. Roudier and D.E. Beaudette

Examples

# just sRGB
parseMunsell("10YR 3/5", return_triplets = TRUE)

# sRGB + CIELAB (D65 illuminant)
parseMunsell("10YR 3/5", return_triplets = TRUE, returnLAB = TRUE)

# CIELAB only
parseMunsell("10YR 3/5", return_triplets = FALSE, returnLAB = TRUE)

# neutral hue
# note chroma encoded as '0'
parseMunsell('N 3/', convertColors = FALSE)

Combine a list of SoilProfileCollection objects

Description

See combine(...) for a connotative short-hand method that does not require that SoilProfileCollection be in a list. Profiles will be sorted based on character sorting of profile ID.

Usage

pbindlist(l, new.idname = NULL, verbose = TRUE)

Arguments

l

a list of SoilProfileCollection objects

new.idname

Optional: a character referring to a new column name to put unique profile IDs in; default: NULL to attempt with existing idname in first element

verbose

Produce warnings and messages regarding results? default: TRUE

Details

Input data must share a common depth unit, and if spatial data are present, a common CRS and coordinate names. In the case of non-conformal @idname and/or @depthcols, the first SoilProfileCollection is used as a template. If one or more subsequent list elements has non-unique values in a site level attribute of that name, the ID name from the second list element is attempted, and so on. Non-conforming spatial data are dropped from the final result (returns default empty SpatialPoints).

Value

a SoilProfileCollection object

Author(s)

D.E. Beaudette and A.G. Brown

Examples

# example data
data(sp2, package = 'aqp')
depths(sp2) <- id ~ top + bottom
site(sp2) <- ~ surface

# copy pieces
x <- sp2[1:5, ]
y <- sp2[6:10, ]

# reset IDs and combine
profile_id(y) <- sprintf("%s-copy", profile_id(y))

# this should work
z <- pbindlist(list(x, y))

# check
plot(z)

Deprecated: Numerical Soil Profile Comparison

Description

See NCSP() for the modern interface to numerical soil profile comparison/classification.

Usage

pc(
  s,
  vars,
  max_d,
  k,
  filter = NULL,
  sample_interval = NA,
  replace_na = TRUE,
  add_soil_flag = TRUE,
  return_depth_distances = FALSE,
  strict_hz_eval = FALSE,
  progress = "none",
  plot.depth.matrix = FALSE,
  rescale.result = FALSE,
  verbose = FALSE
)

pc.SPC(s, vars, rescale.result = FALSE, ...)

## S4 method for signature 'SoilProfileCollection'
profile_compare(s, vars, rescale.result = FALSE, ...)

## S4 method for signature 'data.frame'
profile_compare(
  s,
  vars,
  max_d,
  k,
  filter = NULL,
  sample_interval = NA,
  replace_na = TRUE,
  add_soil_flag = TRUE,
  return_depth_distances = FALSE,
  strict_hz_eval = FALSE,
  progress = "none",
  plot.depth.matrix = FALSE,
  rescale.result = FALSE,
  verbose = FALSE
)

Arguments

s

A SoilProfileCollection

vars

Variable names

max_d

depth-slices up to this depth are considered in the comparison

k

a depth-weighting coeficient, use '0' for no depth-weighting (see examples below)

filter

an index used to determine which horizons (rows) are included in the analysis

sample_interval

use every n-th depth slice instead of every depth slice, useful for working with > 1000 profiles at a time

replace_na

if TRUE, missing data are replaced by maximum dissimilarity (TRUE)

add_soil_flag

The algorithm will generate a 'soil'/'non-soil' matrix for use when comparing soil profiles with large differences in depth (TRUE). See details section below.

return_depth_distances

return intermediate, depth-wise dissimilarity results (FALSE)

strict_hz_eval

should horizons be strictly checked for internal self-consistency? (FALSE)

progress

'none' (default)

plot.depth.matrix

should a plot of the 'soil'/'non-soil' matrix be returned (FALSE)

rescale.result

Rescale result? Default: FALSE

verbose

extra debug output (FALSE)

...

Additional arguments passed to profile_compare()

Details

Performs a numerical comparison of soil profiles using named properties, based on a weighted, summed, depth-segment-aligned dissimilarity calculation. If s is a SoilProfileCollection, site-level variables (2 or more) can also be used. The site-level and horizon-level dissimilarity matrices are then re-scaled and averaged.

Variability in soil depth can interfere significantly with the calculation of between-profile dissimilarity– what is the numerical “distance” (or dissimilarity) between a slice of soil from profile A and the corresponding, but missing, slice from a shallower profile B? Gower's distance metric would yield a NULL distance, despite the fact that intuition suggests otherwise: shallower soils should be more dissimilar from deeper soils. For example, when a 25 cm deep profile is compared with a 50 cm deep profile, numerical distances are only accumulated for the first 25 cm of soil (distances from 26 - 50 cm are NULL). When summed, the total distance between these profiles will generally be less than the distance between two profiles of equal depth. Our algorithm has an option (setting replace_na=TRUE) to replace NULL distances with the maximum distance between any pair of profiles for the current depth slice. In this way, the numerical distance between a slice of soil and a corresponding slice of non-soil reflects the fact that these two materials should be treated very differently (i.e. maximum dissimilarity).

This alternative calculation of dissimilarities between soil and non-soil slices solves the problem of comparing shallow profiles with deeper profiles. However, it can result in a new problem: distances calculated between two shallow profiles will be erroneously inflated beyond the extent of either profile's depth. Our algorithm has an additional option (setting add_soil_flag=TRUE) that will preserve NULL distances between slices when both slices represent non-soil material. With this option enabled, shallow profiles will only accumulate mutual dissimilarity to the depth of the deeper profile.

Note that when the add_soil_flag option is enabled (default), slices are classified as 'soil' down to the maximum depth to which at least one of variables used in the dissimilarity calculation is not NA. This will cause problems when profiles within a collection contain all NAs within the columns used to determine dissimilarity. An approach for identifying and removing these kind of profiles is presented in the examples section below.

A notice is issued if there are any NA values within the matrix used for distance calculations, as these values are optionally replaced by the max dissimilarity.

Our approach builds on the work of (Moore, 1972) and the previously mentioned depth-slicing algorithm.

Value

A dissimilarity matrix object of class 'dissimilarity, dist', optionally scaled by max(D).

Author(s)

Dylan E. Beaudette

References

  • D.E. Beaudette, P. Roudier, A.T. O'Geen, Algorithms for quantitative pedology: A toolkit for soil scientists, Computers & Geosciences, Volume 52, 2013, Pages 258-268, ISSN 0098-3004, doi:10.1016/j.cageo.2012.10.020.

  • Moore, A.; Russell, J. & Ward, W. Numerical analysis of soils: A comparison of three soil profile models with field classification. Journal of Soil Science, 1972, 23, 194-209.

See Also

dice(), cluster::daisy()

Examples

# See ?NCSP for examples

Perturb soil horizon depths using boundary distinctness

Description

"Perturbs" the boundary between horizons or the thickness of horizons using a standard deviation specified as a horizon-level attribute. This is selected using either boundary.attr or thickness.attr to specify the column name.

The boundary standard deviation corresponds roughly to the concept of "horizon boundary distinctness." In contrast, the horizon thickness standard deviation corresponds roughly to the "variation in horizon thickness" so it may be determined from several similar profiles that have a particular layer "in common."

Usage

perturb(
  p,
  n = 100,
  id = NULL,
  thickness.attr = NULL,
  boundary.attr = NULL,
  min.thickness = 1,
  max.depth = NULL,
  new.idname = "pID"
)

Arguments

p

A SoilProfileCollection

n

Number of new profiles to generate (default: 100) per profile in p

id

a vector of profile IDs with length equal to (n). Overrides use of seq_len(n) as default profile ID values.

thickness.attr

Horizon variance attribute containing numeric "standard deviations" reflecting horizon thickness

boundary.attr

Horizon variance attribute containing numeric "standard deviations" reflecting boundary transition distinctness

min.thickness

Minimum thickness of permuted horizons (default: 1)

max.depth

Depth below which horizon depths are not perturbed (default: NULL)

new.idname

New column name to contain unique profile ID (default: pID)

Details

Imagine a Normal curve with mean centered on the vertical (depth axis) at a representative value (RV) horizon bottom depth or thickness. By the Empirical Rule for Normal distribution, two "standard deviations" above or below that "central" mean value represent 95% of the "typical volume" of that horizon or boundary.

perturb() can leverage semi-quantitative (ordered factor) levels of boundary distinctness/topography for the upper and lower boundary of individual horizons. A handy function for this is hzDistinctnessCodeToOffset(). The boundary.attr is arguably easier to parameterize from a single profile description or "Form 232" where horizon boundary distinctness classes (based on vertical distance of transition) are conventionally recorded for each layer.

Alternately, perturb() can be parameterized using standard deviation in thickness of layers derived from a group. Say, the variance parameters are defined from a set of pedons correlated to a particular series or component, and the template "seed" profile is, for example, the Official Series Description or the Representative Component Pedon.

Value

a SoilProfileCollection with n realizations of each profile in p

Author(s)

D.E. Beaudette, A.G. Brown

See Also

random_profile() hzDistinctnessCodeToOffset()

Examples

### THICKNESS

# load sample data and convert into SoilProfileCollection
data(sp3)
depths(sp3) <- id ~ top + bottom

# select a profile to use as the basis for simulation
s <- sp3[3,]

# reset horizon names
s$name <- paste('H', seq_along(s$name), sep = '')

# simulate 25 new profiles
horizons(s)$hz.sd <- 2 # constant standard deviation
sim.1 <- perturb(s, n = 25, thickness.attr = "hz.sd")

# simulate 25 new profiles using different SD for each horizon
horizons(s)$hz.sd <- c(1, 2, 5, 5, 5, 10, 3)
sim.2 <- perturb(s, n = 25, thickness.attr = "hz.sd")

# plot
par(mfrow = c(2, 1), mar = c(0, 0, 0, 0))
plot(sim.1)
mtext(
  'SD = 2',
  side = 2,
  line = -1.5,
  font = 2,
  cex = 0.75
)
plot(sim.2)
mtext(
  'SD = c(1, 2, 5, 5, 5, 10, 3)',
  side = 2,
  line = -1.5,
  font = 2,
  cex = 0.75
)

# aggregate horizonation of simulated data
# note: set class_prob_mode=2 as profiles were not defined to a constant depth
sim.2$name <- factor(sim.2$name)
a <- slab(sim.2, ~ name, cpm=2)

# convert to long format for plotting simplicity
library(data.table)
a.long <- data.table::melt(data.table::as.data.table(a),
               id.vars = c('top', 'bottom'),
                measure.vars = levels(sim.2$name))

# plot horizon probabilities derived from simulated data
# dashed lines are the original horizon boundaries
library(lattice)

xyplot(
  top ~ value,
  groups = variable,
  data = a.long,
  subset = value > 0,
  ylim = c(100,-5),
  type = c('l', 'g'),
  asp = 1.5,
  ylab = 'Depth (cm)',
  xlab = 'Probability',
  auto.key = list(
    columns = 4,
    lines = TRUE,
    points = FALSE
  ),
  panel = function(...) {
    panel.xyplot(...)
    panel.abline(h = s$top, lty = 2, lwd = 2)
  }
)

### BOUNDARIES

# example with sp1 (using boundary distinctness)
data("sp1")
depths(sp1) <- id ~ top + bottom

# specify "standard deviation" for boundary thickness
#   consider a normal curve centered at boundary RV depth
# lookup table: ~maximum thickness of boundary distinctness classes, divided by 3
bound.lut <- c('V'=0.5,'A'=2,'C'=5,'G'=15,'D'=45) / 3

## V          A          C          G          D
## 0.1666667  0.6666667  1.6666667  5.0000000 15.0000000

sp1$bound_sd <- bound.lut[sp1$bound_distinct]

# hold any NA boundary distinctness constant
sp1$bound_sd[is.na(sp1$bound_sd)] <- 0

quantile(sp1$bound_sd, na.rm = TRUE)
p <- sp1[3]

# assume boundary sd is 1/12 midpoint of horizon depth
# (i.e. general relationship: SD increases (less well known) with depth)
sp1 <- transform(sp1, midpt = (bottom - top) / 2 + top, bound_sd = midpt / 12)
quantile(sp1$bound_sd)

perturb(p, boundary.attr = "bound_sd", n = 10)


### Custom IDs

ids <- sprintf("%s-%03d", profile_id(p), 1:10) 
perturb(p, boundary.attr = "bound_sd", id = ids)

Convert pH to/from Reaction Classes

Description

Convert pH to/from Reaction Classes

Usage

ph_to_rxnclass(x, halfclass = FALSE, as.is = FALSE, droplevels = TRUE)

rxnclass_to_ph(x, halfclass = FALSE, digits = 2, simplify = TRUE)

ReactionClassLevels(halfclass = FALSE, as.is = FALSE)

Arguments

x

input pH values (numeric; ph_to_rxnclass()) or reaction classes (character; rxnclass_to_ph())

halfclass

Split the standard classes in half for higher resolution? Default: FALSE

as.is

logical. Should character vectors be converted to factors? Default: FALSE

droplevels

logical. Drop unused levels in factors? Default: FALSE

digits

Number of digits after decimal place; Default: 2. Used only for rxnclass_to_ph()

simplify

Simplify list result to numeric vector when length of result is 1? Default: TRUE

Value

ph_to_rxnclass(): a vector of reaction classes corresponding to numeric input in x; if as.is=FALSE an ordered factor using ReactionClassLevels()

rxnclass_to_ph(): a list of data.frame objects containing high/low values of reaction class 1:1 with input; if simplify=TRUE and input is a data.frame.

ReactionClassLevels(): ordered factor containing descriptive terms for reaction classes

Examples

ph_to_rxnclass(6.2)
rxnclass_to_ph("slightly acid")

rxnclass_to_ph(list(c("Slightly Acid", NA, "Moderately Acid"),
                    c("Slightly Acid", NA, "Strongly Acid")), simplify = FALSE)
ReactionClassLevels()

Between Individual Distance Plot

Description

Plot pair-wise distances between individuals as line segments.

Usage

plot_distance_graph(D, idx = 1:dim(as.matrix((D)))[1])

Arguments

D

distance matrix, should be of class 'dist' or compatible class

idx

an integer sequence defining which individuals should be compared

Details

By default all individuals are plotting on the same axis. When there are more than about 10 individuals, the plot can become quite messy. See examples below for ideas.

Value

No value is returned.

Author(s)

Dylan E Beaudette

References

https://casoilresource.lawr.ucdavis.edu/

See Also

sp2, profile_compare

Examples

data(sp2)
depths(sp2) <- id ~ top + bottom
d <- NCSP(
  sp2,
  vars = c('prop', 'field_ph', 'hue', 'value'),
  maxDepth = 100,
  k = 0.01
)

par(mfcol=c(3,1), mar=c(2.5,4.5,1,1))
plot_distance_graph(d, idx=1:6)
plot_distance_graph(d, idx=7:12)
plot_distance_graph(d, idx=12:18)

Visualize Spectral Mixing of Munsell Colors

Description

Lattice visualization demonstrating subtractive mixtures of colors in Munsell notation and associated spectra.

Usage

plotColorMixture(
  x,
  w = rep(1, times = length(x))/length(x),
  mixingMethod = c("exact", "reference"),
  n = 1,
  swatch.cex = 1.5,
  label.cex = 0.85,
  showMixedSpec = FALSE,
  overlapFix = TRUE
)

Arguments

x

vector of colors in Munsell notation, should not contain duplicates

w

vector of weights, can sum to any number

mixingMethod

approach used to simulate a mixture:

  • exact: simulate a subtractive mixture of pigments, color conversion via CIE1931 color-matching functions (see mixMunsell())

  • reference : simulate a subtractive mixture of pigments, selecting n closest reference spectra, requires gower package

n

number of closest mixture candidates when mixingMethod = 'reference' (see mixMunsell()), results can be hard to interpret when n > 2

swatch.cex

scaling factor for color swatch rectangle width and height, relative to label.cex, typically between 1 and 3

label.cex

scaling factor for swatch labels

showMixedSpec

show weighted geometric mean (mixed) spectra as dotted line (only when mixingMethod = 'reference')

overlapFix

attempt to "fix" overlapping chip labels via fixOverlap(), using method = 'E'

Details

If present, names attribute of x is used for the figure legend. See the expanded tutorial for examples.

Value

a lattice graphics object

Author(s)

D.E. Beaudette

See Also

mixMunsell()


Visualize Color Quantiles

Description

This function creates a visualization of the output from colorQuantiles using lattice graphics.

Usage

plotColorQuantiles(res, pt.cex = 7, lab.cex = 0.66)

Arguments

res

list returned by colorQuantiles

pt.cex

scaling factor for color chips

lab.cex

chip label scaling factor

Details

Marginal percentiles and L1 median CIELAB values from colorQuantiles() are combined into a single plot, arranged in panels according to L, A, and B coordinates. Munsell "chips" (colors and labels) are based on the closest Munsell color found via col2Munsell().

Value

a lattice graphics object

Author(s)

D.E. Beaudette


Plot Multiple SoilProfileCollection Objects

Description

Plot Multiple SoilProfileCollection Objects

Usage

plotMultipleSPC(
  spc.list,
  group.labels,
  args = rep(list(NA), times = length(spc.list)),
  merged.legend = NULL,
  merged.colors = c("#5E4FA2", "#3288BD", "#66C2A5", "#ABDDA4", "#E6F598", "#FEE08B",
    "#FDAE61", "#F46D43", "#D53E4F", "#9E0142"),
  merged.legend.title = merged.legend,
  arrow.offset = 2,
  bracket.base.depth = 95,
  label.offset = 2,
  label.cex = 0.75,
  ...
)

Arguments

spc.list

a list of SoilProfileCollection objects

group.labels

a vector of group labels, one for each SoilProfileCollection object

args

a list of arguments passed to plotSPC, one for each SoilProfileCollection object

merged.legend

name of a horizon level attribute from which to create thematic sketches and merged legend

merged.colors

vector of colors used to create thematic sketches from a shared horizon level attribute

merged.legend.title

legend title

arrow.offset

vertical offset in depth from base of start / end profiles and group bracket arrows

bracket.base.depth

baseline depth used for group brackets

label.offset

vertical offset of group labels from baseline

label.cex

label size

...

additional arguments to the first call to plotSPC

Details

Combine multiple SoilProfileCollection objects into a single profile sketch, with annotated groups.

See examples below for usage.

Note

For thematic sketches, use the merged.legend argument instead of color argument to plotSPC

Author(s)

D.E. Beaudette and Ben Marshall

See Also

profileGroupLabels

Examples

##
## Simple Example
##

# using default arguments to plotSPC()

# load sample data
data(sp3)
data(sp4)

# promote to SoilProfileCollection
depths(sp3) <- id ~ top + bottom
depths(sp4) <- id ~ top + bottom

# combine into a list
spc.list <- list(sp3, sp4)

# argument list
arg.list <- list(
  list(name='name', id.style='top'),
  list(name='name', id.style='side')
)

# plot multiple SPC objects, 
# with list of named arguments for each call to plotSPC
par(mar=c(1,1,3,3))
plotMultipleSPC(
  spc.list, 
  group.labels = c('Collection 1', 'Collection 2'),
  args = arg.list, 
  bracket.base.depth = 120, label.cex = 1
)

# specify a different max.depth
plotMultipleSPC(
  spc.list, 
  group.labels = c('Collection 1', 'Collection 2'),
  args = arg.list, 
  bracket.base.depth = 120, label.cex = 1,
  max.depth = 250
)



##
## Merged Legend Example
##

# merged legend based on hz attribute 'clay'

# reset sample data
data(sp3)
data(sp4)

# promote to SoilProfileCollection
depths(sp3) <- id ~ top + bottom
depths(sp4) <- id ~ top + bottom

# combine into a list
spc.list <- list(sp3, sp4)

# argument list
arg.list <- list(
  list(name='name', id.style='top'),
  list(name='name', id.style='side')
)


par(mar=c(1,1,3,3))
plotMultipleSPC(
  spc.list, 
  group.labels = c('Collection 1', 'Collection 2'),
  args = arg.list, 
  label.cex = 1, 
  merged.legend = 'clay', merged.legend.title = 'Clay (%)'
)


##
## Complex Merged Legend Example
##

# create a merged legend from "clay" in sp4 and jacobs2000
# use "soil_color" from sp3

# reset sample data
data(sp3)
data(sp4)
data(jacobs2000)

# promote to SoilProfileCollection
depths(sp3) <- id ~ top + bottom
depths(sp4) <- id ~ top + bottom

# remove 'clay' column from sp3
sp3$clay <- NULL

# combine into a list
spc.list <- list(sp3, sp4, jacobs2000)

# try some variations on the default arguments
# `clay` is missing in the first SPC, safe to specify another column for colors
arg.list <- list(
  list(color = 'soil_color', id.style='top', name = NA, width = 0.3, hz.depths = TRUE),
  list(name='name', id.style='side', name.style = 'center-center'),
  list(name='name', id.style='side', name.style = 'left-center', hz.depths = TRUE)
)

par(mar=c(1,1,3,3))
plotMultipleSPC(
  spc.list, 
  group.labels = c('sp3', 'sp4', 'jacobs2000'),
  label.offset = 3,
  args = arg.list, 
  merged.legend = 'clay', merged.legend.title = 'Clay (%)',
  depth.axis = list(line = 0)
)

Create Soil Profile Sketches

Description

Generate a diagram of soil profile sketches from a SoilProfileCollection object. The Introduction to SoilProfileCollection Objects Vignette contains many examples and discussion of the large number of arguments to this function. The Soil Profile Sketches tutorial has longer-form discussion and examples pertaining to suites of related arguments.

Options can be used to conveniently specify sets of arguments that will be used in several calls to plotSPC() within a single R session. For example, arguments can be specified in a named list (.a) and set using: options(.aqp.plotSPC.args = .a). Reset these options via options(.aqp.plotSPC.args = NULL). Arguments explicitly passed to plotSPC() will override arguments set via options().

Usage

plotSPC(
  x,
  color = "soil_color",
  width = ifelse(length(x) < 2, 0.15, 0.25),
  name = hzdesgnname(x),
  name.style = "right-center",
  label = idname(x),
  raggedBottom = NULL,
  hz.depths = FALSE,
  hz.depths.offset = ifelse(fixLabelCollisions, 0.03, 0),
  hz.depths.lines = fixLabelCollisions,
  depth.axis = list(style = "traditional", cex = cex.names * 1.15),
  alt.label = NULL,
  alt.label.col = "black",
  cex.names = 0.5,
  cex.id = cex.names + (0.2 * cex.names),
  font.id = 2,
  srt.id = 0,
  print.id = TRUE,
  id.style = "auto",
  plot.order = 1:length(x),
  relative.pos = 1:length(x),
  add = FALSE,
  scaling.factor = 1,
  y.offset = rep(0, times = length(x)),
  x.idx.offset = 0,
  n = length(x),
  max.depth = ifelse(is.infinite(max(x)), 200, max(x)),
  n.depth.ticks = 10,
  shrink = FALSE,
  shrink.cutoff = 3,
  shrink.thin = NULL,
  abbr = FALSE,
  abbr.cutoff = 5,
  divide.hz = TRUE,
  hz.distinctness.offset = NULL,
  hz.topography.offset = NULL,
  hz.boundary.lty = NULL,
  density = NULL,
  show.legend = TRUE,
  col.label = color,
  col.palette = c("#5E4FA2", "#3288BD", "#66C2A5", "#ABDDA4", "#E6F598", "#FEE08B",
    "#FDAE61", "#F46D43", "#D53E4F", "#9E0142"),
  col.palette.bias = 1,
  col.legend.cex = 1,
  n.legend = 8,
  lwd = 1,
  lty = 1,
  default.color = grey(0.95),
  fixLabelCollisions = hz.depths,
  fixOverlapArgs = list(method = "E", q = 1),
  cex.depth.axis = cex.names,
  axis.line.offset = -2,
  plot.depth.axis = TRUE,
  ...
)

## S4 method for signature 'SoilProfileCollection'
plot(x, y, ...)

Arguments

x

a SoilProfileCollection object

color

quoted column name containing R-compatible color descriptions, or numeric / categorical data to be displayed thematically; see details

width

scaling of profile widths (typically 0.1 - 0.4)

name

quoted column name of the (horizon-level) attribute containing horizon designations or labels, if missing hzdesgnname(x) is used. Suppress horizon name printing by setting name = NA or name = ''.

name.style

one of several possible horizon designations labeling styles: c('right-center', 'left-center', 'left-top', 'center-center', 'center-top')

label

quoted column name of the (site-level) attribute used to identify profile sketches

raggedBottom

either quoted column name of the (site-level) attribute (logical) used to mark profiles with a truncated lower boundary, or FALSE suppress ragged bottom depths when max.depth < max(x)

hz.depths

logical, annotate horizon top depths to the right of each sketch (FALSE)

hz.depths.offset

numeric, user coordinates for left-right adjustment for horizon depth annotation; reasonable values are usually within 0.01-0.05 (default: 0)

hz.depths.lines

logical, draw segments between horizon depth labels and actual horizon depth; this is useful when including horizon boundary distinctness and/or fixLabelCollisions = TRUE

depth.axis

logical or list. Use a logical to suppress (FALSE) or add depth axis using defaults (TRUE). Use a list to specify one or more of:

  • style: character, one of 'traditional', 'compact', or 'tape'

  • line: numeric, negative values move axis to the left (does not apply to style = 'tape')

  • cex: numeric, scaling applied to entire depth axis

  • interval: numeric, axis interval See examples.

alt.label

quoted column name of the (site-level) attribute used for secondary annotation

alt.label.col

color used for secondary annotation text

cex.names

baseline character scaling applied to all text labels

cex.id

character scaling applied to label

font.id

font style applied to label, default is 2 (bold)

srt.id

rotation applied to label, only when id.style = 'top'

print.id

logical, print label above/beside each profile? (TRUE)

id.style

label printing style: 'auto' (default) = simple heuristic used to select from: 'top' = centered above each profile, 'side' = 'along the top-left edge of profiles'

plot.order

integer vector describing the order in which individual soil profiles should be plotted

relative.pos

vector of relative positions along the x-axis, within {1, n}, ignores plot.order see details

add

logical, add to an existing figure

scaling.factor

vertical scaling of profile depths, useful for adding profiles to an existing figure

y.offset

numeric vector of vertical offset for top of profiles in depth units of x, can either be a single numeric value or vector of length = length(x). A vector of y-offsets will be automatically re-ordered according to plot.order.

x.idx.offset

integer specifying horizontal offset from 0 (left-hand edge)

n

integer describing amount of space along x-axis to allocate, defaults to length(x)

max.depth

numeric. The lower depth for all sketches, deeper profiles are truncated at this depth. Use larger values to arbitrarily extend the vertical dimension, convenient for leaving extract space for annotation.

n.depth.ticks

suggested number of ticks in depth scale

shrink

logical, reduce character scaling for 'long' horizon by 80%

shrink.cutoff

character length defining 'long' horizon names

shrink.thin

integer, horizon thickness threshold for shrinking horizon names by 80%, only activated when shrink = TRUE (NULL = no shrinkage)

abbr

logical, abbreviate label

abbr.cutoff

suggested minimum length for abbreviated label

divide.hz

logical, divide horizons with line segment? (TRUE), see details

hz.distinctness.offset

NULL, or quoted column name (horizon-level attribute) containing vertical offsets used to depict horizon boundary distinctness (same units as profiles), see details and hzDistinctnessCodeToOffset(); consider setting hz.depths.lines = TRUE when used in conjunction with hz.depths = TRUE

hz.topography.offset

NULL, or quoted column name (horizon-level attribute) containing offsets used to depict horizon boundary topography (same units as profiles), see details and hzTopographyCodeToOffset()

hz.boundary.lty

quoted column name (horizon-level attribute) containing line style (integers) used to encode horizon topography

density

fill density used for horizon color shading, either a single integer or a quoted column name (horizon-level attribute) containing integer values (default is NULL, no shading)

show.legend

logical, show legend? (default is TRUE)

col.label

thematic legend title

col.palette

color palette used for thematic sketches (default is rev(brewer.pal(10, 'Spectral')))

col.palette.bias

color ramp bias (skew), see colorRamp()

col.legend.cex

scaling of thematic legend

n.legend

approximate number of classes used in numeric legend, max number of items per row in categorical legend

lwd

line width multiplier used for sketches

lty

line style used for sketches

default.color

default horizon fill color used when color attribute is NA

fixLabelCollisions

use fixOverlap() to attempt fixing hz depth labeling collisions, will slow plotting of large collections; enabling also sets hz.depths.lines = TRUE. Additional arguments to fixOverlap() can be passed via fixOverlapArgs. Overlap collisions cannot be fixed within profiles containing degenerate or missing horizon depths (e.g. top == bottom).

fixOverlapArgs

a named list of arguments to fixOverlap(). Overlap adjustments are attempted using electrostatic simulation with arguments: list(method = 'E', q = 1). Alternatively, select adjustment by simulated annealing via list(method = 'S'). See electroStatics_1D() and SANN_1D() for details.

cex.depth.axis

(deprecated, use depth.axis instead) character scaling applied to depth scale

axis.line.offset

(deprecated, use depth.axis instead) horizontal offset applied to depth axis (default is -2, larger numbers move the axis to the right)

plot.depth.axis

(deprecated, use depth.axis instead) logical, plot depth axis?

...

other arguments passed into lower level plotting functions

y

(not used)

Details

Depth limits (max.depth) and number of depth ticks (n.depth.ticks) are suggestions to the pretty() function. You may have to tinker with both parameters to get what you want.

The 'side' id.style is useful when plotting a large collection of profiles, and/or, when profile IDs are long.

If the column containing horizon designations is not specified (the name argument), a column (presumed to contain horizon designation labels) is guessed based on regular expression matching of the pattern 'name'–this usually works, but it is best to manual specify the name of the column containing horizon designations.

The color argument can either name a column containing R-compatible colors, possibly created via munsell2rgb(), or column containing either numeric or categorical (either factor or character) values. In the second case, values are converted into colors and displayed along with a simple legend above the plot. Note that this functionality makes several assumptions about plot geometry and is most useful in an interactive setting.

Adjustments to the legend can be specified via col.label (legend title), col.palette (palette of colors, automatically expanded), col.legend.cex (legend scaling), and n.legend (approximate number of classes for numeric variables, or, maximum number of legend items per row for categorical variables). Currently, plotSPC will only generate two rows of legend items. Consider reducing the number of classes if two rows isn't enough room.

Profile sketches can be added according to relative positions along the x-axis (vs. integer sequence) via relative.pos argument. This should be a vector of positions within {1,n} that are used for horizontal placement. Default values are 1:length(x). Care must be taken when both plot.order and relative.pos are used simultaneously: relative.pos specifies horizontal placement after sorting. addDiagnosticBracket() and addVolumeFraction() use the relative.pos values for subsequent annotation.

Relative positions that are too close will result in overplotting of sketches. Adjustments to relative positions such that overlap is minimized can be performed with fixOverlap(pos), where pos is the original vector of relative positions.

The x.idx.offset argument can be used to shift a collection of pedons from left to right in the figure. This can be useful when plotting several different SoilProfileCollection objects within the same figure. Space must be pre-allocated in the first plotting call, with an offset specified in the second call. See examples below.

Horizon depths (e.g. cm) are converted to figure y-coordinates via: y = (depth * scaling.factor) + y.offset.

Note

A new plot of soil profiles is generated, or optionally added to an existing plot.

Author(s)

D.E. Beaudette

References

Beaudette, D.E., Roudier P., and A.T. O'Geen. 2013. Algorithms for Quantitative Pedology: A Toolkit for Soil Scientists. Computers & Geosciences. 52:258 - 268.

See Also

fixOverlap(), explainPlotSPC(), SoilProfileCollection, pretty(), hzDistinctnessCodeToOffset(), addBracket(), profileGroupLabels()

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))


# example data
data(sp1)
# usually best to adjust margins
par(mar = c(0,0,3,0))

# add color vector
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))

# promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom

# init horizon designation 
hzdesgnname(sp1) <- 'name'

# plot profiles
plotSPC(sp1, id.style = 'side')

# title, note line argument:
title('Sample Data 1', line = 1, cex.main = 0.75)

# plot profiles without horizon-line divisions
plotSPC(sp1, divide.hz = FALSE)

# diagonal lines encode horizon boundary distinctness
sp1$hzD <- hzDistinctnessCodeToOffset(sp1$bound_distinct)
plotSPC(sp1, hz.distinctness.offset = 'hzD', name.style = 'center-center')

# plot horizon color according to some property
data(sp4)
depths(sp4) <- id ~ top + bottom
hzdesgnname(sp4) <- 'name'
plotSPC(sp4, color = 'clay')

# another example
data(sp2)
depths(sp2) <- id ~ top + bottom
hzdesgnname(sp2) <- 'name'
site(sp2) <- ~ surface

# some of these profiles are very deep, truncate plot at 400cm
# label / re-order with site-level attribute: `surface`
plotSPC(sp2, label = 'surface', plot.order = order(sp2$surface), 
max.depth = 400)

# example using a categorical attribute
plotSPC(sp2, color = "plasticity", 
max.depth = 400)

# plot two SPC objects in the same figure
par(mar = c(1,1,1,1))

# plot the first SPC object and
# allocate space for the second SPC object
plotSPC(sp1, n = length(sp1) + length(sp2))

# plot the second SPC, starting from the first empty space
plotSPC(sp2, x.idx.offset = length(sp1), add = TRUE)


##
## demonstrate horizon designation shrinkage
##

data("jacobs2000")

# shrink "long" horizon names
plotSPC(
  jacobs2000, 
  name = 'name',
  name.style = 'center-center', 
  shrink = TRUE, 
  cex.names = 0.8
)

# shrink horizon names in "thin" horizons
plotSPC(
  jacobs2000, 
  name = 'name',
  name.style = 'center-center', 
  shrink = TRUE, 
  shrink.thin = 15,
  cex.names = 0.8,
)


##
## demonstrate adaptive legend
##

data(sp3)
depths(sp3) <- id ~ top + bottom

# make some fake categorical data
horizons(sp3)$fake.data <- sample(letters[1:15], size = nrow(sp3), replace=TRUE)

# better margins
par(mar=c(0,0,3,1))

# note that there are enough colors for 15 classes (vs. previous limit of 10)
# note that the legend is split into 2 rows when length(classes) > n.legend argument
plotSPC(sp3, color='fake.data', name='fake.data', cex.names=0.8)

# make enough room in a single legend row
plotSPC(sp3, color='fake.data', name='fake.data', cex.names=0.8, n.legend=15)


##
## demonstrate y.offset argument
## must be of length 1 or length(x)
##

# example data and local copy
data("jacobs2000")
x <- jacobs2000
hzdesgnname(x) <- 'name'

# y-axis offsets, simulating a elevation along a hillslope sequence
# same units as horizon depths in `x`
# same order as profiles in `x`
y.offset <- c(-5, -10, 22, 65, 35, 15, 12)

par(mar = c(0, 0, 2, 2))

# y-offset at 0
plotSPC(x, color = 'matrix_color', cex.names = 0.66)

# constant adjustment to y-offset
plotSPC(x, color = 'matrix_color', cex.names = 0.66, y.offset = 50)

# attempt using invalid y.offset
# warning issued and default value of '0' used
# plotSPC(x, color = 'matrix_color', cex.names = 0.66, y.offset = 1:2)

# variable y-offset
# fix overlapping horizon depth labels
par(mar = c(0, 0, 1, 0))
plotSPC(
  x, 
  y.offset = y.offset, 
  color = 'matrix_color', 
  cex.names = 0.75, 
  shrink = TRUE,
  hz.depths = TRUE, 
  hz.depths.offset = 0.05,
  fixLabelCollisions = TRUE,
  name.style = 'center-center'
)



# random y-axis offsets
yoff <- runif(n = length(x), min = 1, max = 100)

# random gradient of x-positions
xoff <- runif(n = length(x), min = 1, max = length(x))

# note profiles overlap
plotSPC(x, 
        relative.pos = xoff, 
        y.offset = yoff, 
        color = 'matrix_color', 
        cex.names = 0.66, 
        hz.depths = TRUE, 
        name.style = 'center-center'
)


# align / adjust relative x positions
set.seed(111)
pos <- alignTransect(xoff, x.min = 1, x.max = length(x), thresh = 0.65)

# y-offset is automatically re-ordered according to
# plot.order

par(mar = c(0.5, 0.5, 0.5, 0.5))
plotSPC(x, 
        plot.order = pos$order, 
        relative.pos = pos$relative.pos, 
        y.offset = yoff, 
        color = 'matrix_color', 
        cex.names = 0.66, 
        hz.depths = TRUE, 
        name.style = 'center-center'
)

box()

Preview Colors

Description

Preview colors arranged according to CIE2000 distances or manual specification.

Usage

previewColors(
  cols,
  method = c("grid", "MDS", "manual"),
  labels = NULL,
  labels.cex = 1,
  col.order = NULL,
  nrow = ceiling(sqrt(length(cols))),
  ncol = nrow,
  border.col = "black",
  pt.cex = 2,
  pt.pch = 15
)

Arguments

cols

vector of R colors

method

either "grid", "MDS", or "manual", see details

labels

optional vector of labels, disabled when length(cols) > 5000

labels.cex

scaling factor for labels

col.order

integer vector used to order colors

nrow

number of rows used by "grid" method

ncol

number of columns used by "grid" method

border.col

border color used by "grid" method

pt.cex

point scaling factor used by "MDS" method

pt.pch

point symbol used by "MDS" method

Details

Color sorting is based on CIE2000 distances as calculated by farver::compare_colour(). The "grid" method arranges colors in a rectangular grid with ordering based on divisive hierarchical clustering of the pair-wise distances. Unique colors are used when cols contains more than 5,000 colors.

The "MDS" method arranges unique colors via classical multidimensional scaling (principal coordinates) via cmdscale().

Colors can be manually arranged by supplying a vector of integers to col.order and setting method='manual'.

Value

When method = "grid" or "manual" a vector of color order is returned. When method = "MDS", the output from MASS::cmdscale.

Author(s)

D.E. Beaudette

Examples

# example data
data(sp2)

# convert into SoilProfileCollection object
depths(sp2) <- id ~ top + bottom

previewColors(sp2$soil_color)
previewColors(sp2$soil_color, method = 'MDS', pt.cex = 3)

# create colors using HCL space
cols.hcl <- hcl(h = 0:360, c = 100, l = 50)

# grid, colors sorted by dE00
previewColors(cols.hcl)

# manual specification
previewColors(cols.hcl, method = 'manual', col.order = 1:361)

# MDS
previewColors(cols.hcl, method = 'MDS', pt.cex = 1)

Get or Set Coordinate Reference System for SoilProfileCollection

Description

prj(): Get Coordinate Reference System (Projection) metadata

⁠prj()<-⁠: Set Coordinate Reference System metadata for the SoilProfileCollection

proj4string(): (Deprecated) Get Coordinate Reference System as PROJ4 String

⁠proj4string()<-⁠: (Deprecated) Set Coordinate Reference System metadata for the SoilProfileCollection

Usage

## S4 method for signature 'SoilProfileCollection'
prj(object, ...)

## S4 replacement method for signature 'SoilProfileCollection'
prj(object, ...) <- value

## S4 method for signature 'SoilProfileCollection'
proj4string(obj)

## S4 replacement method for signature 'SoilProfileCollection'
proj4string(obj) <- value

Arguments

object

A SoilProfileCollection

...

Additional arguments (not used)

value

character. Representation of Coordinate Reference System as "authority:code", integer EPSG code, WKT2019 / PROJ4 string, an sf crs or sp CRS object.

obj

A SoilProfileCollection

See Also

initSpatial<-()


Set profile IDs

Description

Set vector containing profile IDs

Get or set a vector of profile IDs

Usage

## S4 replacement method for signature 'SoilProfileCollection'
profile_id(object) <- value

## S4 method for signature 'SoilProfileCollection'
profile_id(object)

Arguments

object

a SoilProfileCollection

value

a unique vector of equal length to number of profiles length(object)


Iterate over profiles in a SoilProfileCollection

Description

Iterate over all profiles in a SoilProfileCollection, calling FUN on a single-profile SoilProfileCollection for each step.

Usage

## S4 method for signature 'SoilProfileCollection'
profileApply(
  object,
  FUN,
  simplify = TRUE,
  frameify = FALSE,
  chunk.size = 100,
  column.names = NULL,
  APPLY.FUN = lapply,
  ...
)

Arguments

object

a SoilProfileCollection

FUN

a function to be applied to each profile within the collection

simplify

logical, should the result be simplified to a vector? default: TRUE; see examples

frameify

logical, should the result be collapsed into a data.frame? default: FALSE; overrides simplify argument; see examples

chunk.size

numeric, size of "chunks" for faster processing of large SoilProfileCollection objects; default: 100

column.names

character, optional character vector to replace frameify-derived column names; should match length of colnames() from FUN result; default: NULL

APPLY.FUN

function, optional alternate lapply()-like function for processing chunks. For example future.apply::future_lapply() for processing chunks in parallel. Default base::lapply().

...

additional arguments passed to FUN

Value

When simplify is TRUE, a vector of length nrow(object) (horizon data) or of length length(object) (site data). When simplify is FALSE, a list is returned. When frameify is TRUE, a data.frame is returned. An attempt is made to identify idname and/or hzidname in the data.frame result, safely ensuring that IDs are preserved to facilitate merging profileApply result downstream.

Examples

data(sp1)
depths(sp1) <- id ~ top + bottom

# estimate soil depth using horizon designations
profileApply(sp1, estimateSoilDepth, name='name')

# scale a single property 'prop' in horizon table
# scaled = (x - mean(x)) / sd(x)
sp1$d <- profileApply(sp1, FUN=function(x) round(scale(x$prop), 2))
plot(sp1, name='d')

# compute depth-wise differencing by profile
# note that our function expects that the column 'prop' exists
f <- function(x) { c(x$prop[1], diff(x$prop)) }
sp1$d <- profileApply(sp1, FUN=f)
plot(sp1, name='d')

# compute depth-wise cumulative sum by profile
# note the use of an anonymous function
sp1$d <- profileApply(sp1, FUN=function(x) cumsum(x$prop))
plot(sp1, name='d')

# compute profile-means, and save to @site
# there must be some data in @site for this to work
site(sp1) <- ~ group
sp1$mean_prop <- profileApply(sp1, FUN=function(x) mean(x$prop, na.rm=TRUE))

# re-plot using ranks defined by computed summaries (in @site)
plot(sp1, plot.order=rank(sp1$mean_prop))

## iterate over profiles, calculate on each horizon, merge into original SPC

# example data
data(sp1)

# promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

# calculate horizon thickness and proportional thickness
# returns a data.frame result with multiple attributes per horizon
thicknessFunction <- function(p) {
  hz <- horizons(p)
  depthnames <- horizonDepths(p)
  res <- data.frame(profile_id(p), hzID(p),
                    thk=(hz[[depthnames[[2]]]] - hz[[depthnames[1]]]))
  res$hz_prop <- res$thk / sum(res$thk)
  colnames(res) <- c(idname(p), hzidname(p), 'hz_thickness', 'hz_prop')
  return(res)
}

# list output option with simplify=F, list names are profile_id(sp1)
list.output <- profileApply(sp1, thicknessFunction, simplify = FALSE)
head(list.output)

# data.frame output option with frameify=TRUE
df.output <- profileApply(sp1, thicknessFunction, frameify = TRUE)
head(df.output)

# since df.output contains idname(sp1) and hzidname(sp1),
# it can safely be merged by a left-join via horizons<- setter
horizons(sp1) <- df.output

plot(density(sp1$hz_thickness, na.rm=TRUE), main="Density plot of Horizon Thickness")

## iterate over profiles, subsetting horizon data

# example data
data(sp1)

# promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

# make some fake site data related to a depth of some importance
sp1$dep <- profileApply(sp1, function(i) {round(rnorm(n=1, mean=mean(i$top)))})

# custom function for subsetting horizon data, by profile
# keep horizons with lower boundary < site-level attribute 'dep'
fun <- function(i) {
  # extract horizons
  h <- horizons(i)
  # make an expression to subset horizons
  exp <- paste('bottom < ', i$dep, sep='')
  # subset horizons, and write-back into current SPC
  slot(i, 'horizons') <- subset(h, subset=eval(parse(text=exp)))
  # return modified SPC
  return(i)
}

# list of modified SoilProfileCollection objects
l <- profileApply(sp1, fun, simplify=FALSE)

# re-combine list of SoilProfileCollection objects into a single SoilProfileCollection
sp1.sub <- pbindlist(l)

# graphically check
par(mfrow=c(2,1), mar=c(0,0,1,0))
plot(sp1)
points(1:length(sp1), sp1$dep, col='red', pch=7)
plot(sp1.sub)

Soil Profile Group Labels

Description

Labels groups of soil profiles within soil profile sketches.

See examples below for ideas.

Usage

profileGroupLabels(
  x0,
  x1,
  labels,
  y0 = 100,
  y1 = 98,
  label.offset = 2,
  label.cex = 0.75
)

Arguments

x0

integer indices to the first profile within each group

x1

integer indices to the last profile within each group

labels

vector of group labels

y0

baseline depth used for group brackets

y1

depth used for start and end markers for group brackets (see examples)

label.offset

vertical offset of group labels from baseline

label.cex

label size

Note

This function is typically called by some other convenience function such as plotMultipleSPC.

Author(s)

D.E. Beaudette

See Also

plotMultipleSPC

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

# load sample data
data(sp3)
data(sp4)

# convert soil colors
sp3$h <- NA ; sp3$s <- NA ; sp3$v <- NA
sp3.rgb <- with(sp3, munsell2rgb(hue, value, chroma, return_triplets=TRUE))
sp3[, c('h','s','v')] <- t(with(sp3.rgb, rgb2hsv(r, g, b, maxColorValue=1)))

# promote to SoilProfileCollection
depths(sp3) <- id ~ top + bottom
depths(sp4) <- id ~ top + bottom

# combine into a list
spc.list <- list(sp3, sp4)

# compute group lengths and start/stop locations
n.groups <- length(spc.list)
spc.lengths <- sapply(spc.list, length)
n.pedons <- sum(spc.lengths)
group.starts <- c(1, 1 + cumsum(spc.lengths[-n.groups]))
group.ends <- cumsum(spc.lengths)

# determine depths of first / last profile in each group
yy <- unlist(sapply(spc.list, function(i) profileApply(i, max)))
tick.heights <- yy[c(group.starts, group.ends)] + 2

# plot 2 SoilProfileCollection objects on the same axis
par(mar=c(1,1,1,1))
plotSPC(sp3, n = n.pedons)
plotSPC(sp4, add = TRUE, x.idx.offset = group.ends[1], 
depth.axis = FALSE, id.style = 'side')

# annotate groups
profileGroupLabels(x0 = group.starts, x1 = group.ends,
labels=c('Collection 1', 'Collection 2'), y0=120, y1=tick.heights)

Soil Profile Information Index

Description

A simple index of "information" content associated with individuals in a SoilProfileCollection object. Information content is quantified by number of bytes after compression via memCompress().

Usage

profileInformationIndex(
  x,
  vars,
  method = c("joint", "individual"),
  baseline = FALSE,
  numericDigits = 8,
  padNA = FALSE,
  scaleNumeric = FALSE,
  compression = "gzip"
)

Arguments

x

SoilProfileCollection object

vars

character vector of site or horizon level attributes to consider

method

character, 'individual' or 'joint' complexity

baseline

logical, compute ratio to "baseline" information content, see details

numericDigits

integer, number of significant digits to retain in numeric -> character conversion

padNA

logical, pad depths to max(x), supplied to dice(fill = padNA)

scaleNumeric

logical, scale() each numeric variable, causing "profile information" to vary based on other profiles in the collection

compression

character, compression method as used by memCompress(): 'gzip', 'bzip2', 'xz', 'none'

Details

Information content via compression (gzip) is the central assumption behind this function: the values associated with a simple soil profile having few horizons and little variation between horizons (isotropic depth-functions) will compress to a much smaller size than a complex profile (many horizons, strong anisotropy). Information content is evaluated a profile at a time, over each site or horizon level attribute specified in vars. The baseline argument invokes a comparison to the simplest possible representation of each depth-function:

  • numeric: replication of the mean value to match the number of horizons with non-NA values

  • character or factor: replication of the most frequent value to match the number of horizons with non-NA values

The ratios computed against a "simple" baseline represent something like "information gain". Larger baseline ratios suggest more complexity (more information) associated with a soil profile's depth-functions. Alternatively, the total quantity of information (in bytes) can be determined by setting baseline = FALSE.

Value

a numeric vector of the same length as length(x) and in the same order, suitable for direct assignment to a new site-level attribute

Author(s)

D.E. Beaudette

Examples

# single horizon, constant value
p1 <- data.frame(id = 1, top = 0, bottom = 100, p = 5, name = 'H')

# multiple horizons, constant value
p2 <- data.frame(
  id = 2, top = c(0, 10, 20, 30, 40, 50),
  bottom = c(10, 20, 30, 40, 50, 100),
  p = rep(5, times = 6),
  name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C')
)

# multiple horizons, random values
p3 <- data.frame(
  id = 3, top = c(0, 10, 20, 30, 40, 50),
  bottom = c(10, 20, 30, 40, 50, 100),
  p = c(1, 5, 10, 35, 6, 2),
  name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C')
)

# multiple horizons, mostly NA
p4 <- data.frame(
  id = 4, top = c(0, 10, 20, 30, 40, 50),
  bottom = c(10, 20, 30, 40, 50, 100),
  p = c(1, NA, NA, NA, NA, NA),
  name = c('A1', 'A2', 'Bw', 'Bt1', 'Bt2', 'C')
)

# shallower version of p1
p5 <- data.frame(id = 5, top = 0, bottom = 50, p = 5, name = 'H')

# combine and upgrade to SPC
z <- rbind(p1, p2, p3, p4, p5)
depths(z) <- id ~ top + bottom
hzdesgnname(z) <- 'name'

z <- fillHzGaps(z)

# visual check
par(mar = c(1, 0, 3, 3))
plotSPC(z, color = 'p', name.style = 'center-center', cex.names = 0.8, max.depth = 110)

# factor version of horizon name
z$fname <- factor(z$name)

vars <- c('p', 'name')
# result is total bytes
pi <- profileInformationIndex(z, vars = vars, method = 'joint', baseline = FALSE)

text(x = 1:5, y = 105, labels = pi, cex = 0.85)
mtext('Profile Information Index (bytes)', side = 1, line = -1)

Quickly Assemble a SoilProfileCollection

Description

Quickly assemble a single-profile, SoilProfileCollection object from two possible templates. This function is a useful shortcut for creating theoretical SoilProfileCollection objects for testing or demonstrative purposes.

Usage

quickSPC(
  x,
  id = "id",
  d = "depths",
  n = "name",
  m = "soil_color",
  interval = 10
)

Arguments

x

either a list or character vector, see Details and Examples

id

character, specified when x is a list, name of ID list element

d

character, specified when x is a list, name of depths list element

n

character, specified when x is a list, name of horizon name list element

m

character, specified when x is a list, name of list element containing Munsell color notation

interval

numeric, typically an integer and only specified when using character templates in mode 2. See Details.

Details

The list template for a single SPC allows for full specification of ID, horizon designation, bottom depths, and an arbitrary number of horizon-level attributes. A compact notation is used for profile ID (single value) and horizon depths (bottom depths, assuming datum of 0). Horizon designation and additional data (e.g. clay content) are specified as vectors all of equal length, matching the number of horizons in the profile.

The character template can be provided in one of several formats:

  1. 'A-Bt1-Bt2-Bt3-Cr-R'

  2. 'ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC'

Format 1 is interpreted as a horizon sequence delimited by '-' or newline character (\n). Random integer thickness are assigned to horizons, and profile ID created via digest::digest(..., algo = 'xxhash32'). Iteration over templates in this format is automatic when x is a character vector of length > 1.

Format 2 is interpreted as a horizon sequence delimited by '|'. Horizon thickness is proportional to replication of horizon designation and scaled by the interval argument. Profile ID is created via digest::digest(..., algo = 'xxhash32'). Iteration over templates in this format is automatic when x is a character vector of length > 1.

Explicit naming of profile IDs can be accomplished by specifying an ID via prefix, as in "ID:A-Bt1-Bt2-Cr-R" or "ID:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC". Labels specified before a ":" will be interpreted as a profile ID. These labels are optional but if specified must be unique within x.

Single-horizon profile templates must include a trailing horizon delimiter: '-', '\n', or '|' depending on the format.

Value

SoilProfileCollection object

Examples

# list-based template
x <- list(
id = 'P1',
depths = c(25, 33, 100, 150),
name = c('A', 'Bw', 'Bt', 'Cr'),
clay = c(12, 15, 22, 25),
soil_color = c('10YR 3/3', '10YR 4/4', '10YR 4/6', '5G 6/2')
)

s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', cex.names = 1)

# character template, mode 1
# horizon thickness is generated at random (uniform [5,20])
x <- 'A-Bt1-Bt2-Bt3-Cr-R'

s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', cex.names = 1)


# multiple templates
x <- c(
'A-Bt1-Bt2-Bt3-Cr-R', 
'A-C1-C2-C3-C4-Ab', 
'Ap-A-A/E-E-Bhs-Cr'
)

# this interface is vectorized 
s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', cex.names = 1)


# optionally specify profile IDs using "ID:" prefix
x <- c(
'P1:A-Bt1-Bt2-Bt3-Cr-R',
'P2:A-C1-C2-C3-C4-Ab',
'P3:Ap-A-A/E-E-Bhs-Cr'
)

s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', cex.names = 1)


# optionally specify:
# horizon bottom depths in cm
# soil color in Munsell notation
x <- c(
'1. simple:Oe-A-E-Bhs',
'2. full:Oe,10,10YR 2/2-A,20,10YR 3/3-E,30,2.5Y 8/2-Bhs,60,7.5YR 4/6'
)

s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', cex.names = 1)

# use newline character as delimiter, more compact
x <- 'Oe,10,10YR 2/2
A,20,10YR 3/3
E,30,2.5Y 8/2
Bhs,60,7.5YR 4/6
BC,125,7.5YR 6/4
C,150,10YR 6/2'

plotSPC(quickSPC(x), name.style = 'center-center', cex.names = 1)


# character template, mode 2
# horizon thickness is proportional to replication of 
# horizon designation and scaled by 'interval' argument
# default of 10 depth units
# e.g. A horizon is 3 * 10 = 30 depth units thick.
x <- c(
  'AAA|BwBwBwBw|CCCCCCC|CdCdCdCd',
  'ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC',
  'A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR'
  )

# each horizon label is '10' depth-units (default)
s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', 
        cex.names = 1, depth.axis = FALSE, 
        hz.depths = TRUE
)

# each horizon label is '5' depth-units
s <- quickSPC(x, interval = 5)
plotSPC(s, name.style = 'center-center', 
        cex.names = 1, depth.axis = FALSE, 
        hz.depths = TRUE
)

# optionally specify some / all profile IDs with "ID:" prefix
x <- c(
  'P1:AAA|BwBwBwBw|CCCCCCC|CdCdCdCd',
  'P2:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC',
  'A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR'
  )

s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', 
        cex.names = 1, depth.axis = FALSE, 
        hz.depths = TRUE
)


# make a NODATA profile, with a random hash ID
#  note the use of trailing horizon delimiter
#  note the use of NA soil color field
x <- 'NODATA,150,NA-'
s <- quickSPC(x)
plotSPC(s, name.style = 'center-center', 
        cex.names = 1, depth.axis = FALSE, 
        hz.depths = TRUE)

Random Profile

Description

Generate a random soil profile according to set criteria, with correlated depth trends.

The random walk method produces profiles with considerable variation between horizons and is based on values from the normal distribution seeded with means and standard deviations drawn from the uniform distribution of [0, 10].

The logistic power peak (LPP) function can be used to generate random soil property depth functions that are sharply peaked. LPP parameters can be hard-coded using the optional arguments: "lpp.a", "lpp.b", "lpp.u", "lpp.d", "lpp.e". Amplitude of the peak is controlled by ("lpp.a + "lpp.b"), depth of the peak by "lpp.u", and abruptness by "lpp.d" and "lpp.e". Further description of the method is outlined in (Brenton et al, 2011). Simulated horizon distinctness codes are based on the USDA-NCSS field description methods. Simulated distinctness codes are constrained according to horizon thickness, i.e. a gradual boundary (+/- 5cm) will not be simulated for horizons that are thinner than 3x this vertical distance

Usage

random_profile(
  id,
  n = c(3, 4, 5, 6),
  min_thick = 5,
  max_thick = 30,
  n_prop = 5,
  exact = FALSE,
  method = "random_walk",
  HzDistinctSim = FALSE,
  SPC = FALSE,
  ...
)

Arguments

id

a character or numeric id used for this profile

n

vector of possible number of horizons, or the exact number of horizons (see below)

min_thick

minimum thickness criteria for a simulated horizon

max_thick

maximum thickness criteria for a simulated horizon

n_prop

number of simulated soil properties (columns in the returned dataframe)

exact

should the exact number of requested horizons be generated? (defaults to FALSE)

method

named method used to synthesize depth function ('random_walk' or 'LPP'), see details

HzDistinctSim

optionally simulate horizon boundary distinctness codes

SPC

result is a SoilProfileCollection object, otherwise a data.frame object

...

additional parameters passed-in to the LPP (.lpp) function

Value

A data.frame or SoilProfileCollection object.

Note

See examples for ideas on simulating several profiles at once.

Author(s)

Dylan E. Beaudette

References

Myers, D. B.; Kitchen, N. R.; Sudduth, K. A.; Miles, R. J.; Sadler, E. J. & Grunwald, S. Peak functions for modeling high resolution soil profile data Geoderma, 2011, 166, 74-83.

See Also

profile_compare, hzDistinctnessCodeToOffset

Examples

# generate 10 random profiles, result is a list of SoilProfileCollection objects
d <- lapply(1:10, random_profile, SPC=TRUE)

# combine
d <- combine(d)

# plot
opar <- par(mar=c(0,0,3,2))
plotSPC(d, color='p1', name='name', cex.names=0.75)
par(opar)

# simulate horizon boundary distinctness codes:
d <- lapply(1:10, random_profile, SPC=TRUE, HzDistinctSim=TRUE)
d <- combine(d)

d$HzD <- hzDistinctnessCodeToOffset(d$HzDistinctCode)

opar <- par(mar=c(0,0,3,2))
plotSPC(d, name='name', color='p1', hz.distinctness.offset='HzD')
par(opar)


# depth functions are generated using the LPP function
opar <- par(mfrow=c(2,1), mar=c(0,0,3,0))

# generate data
d.1 <- lapply(1:10, random_profile, SPC=TRUE, n=c(6, 7, 8), n_prop=1, method='LPP')
d.1 <- combine(d.1)

# plot
plotSPC(d.1, name='name', color='p1', col.label = 'LPP Defaults')


# do this again, this time set all of the LPP parameters
d.2 <- lapply(1:10, random_profile, SPC=TRUE, n=c(6, 7, 8), n_prop=1, method='LPP',
           lpp.a=5, lpp.b=10, lpp.d=5, lpp.e=5, lpp.u=25)
d.2 <- combine(d.2)

# plot
plotSPC(d.2, name='name', color='p1', col.label = 'Custom LPP Parameters')


# reset plotting defaults
par(opar)



# try plotting the LPP-derived simulated data
# aggregated over all profiles
a <- slab(d.2, fm= ~ p1)
a$mid <- with(a, (top + bottom) / 2)

library(lattice)
(p1 <- xyplot(mid ~ p.q50, data=a,
              lower=a$p.q25, upper=a$p.q75, ylim=c(150,-5), alpha=0.5,
              panel=panel.depth_function, prepanel=prepanel.depth_function,
              cf=a$contributing_fraction, xlab='Simulated Data', ylab='Depth',
              main='LPP(a=5, b=10, d=5, e=5, u=25)',
              par.settings=list(superpose.line=list(col='black', lwd=2))
))

# optionally add original data as step-functions
if(require(latticeExtra)) {
  h <- horizons(d.2)
  p1 + as.layer(xyplot(top ~ p1, groups=id, data=h,
                       horizontal=TRUE, type='S',
                       par.settings=list(superpose.line=list(col='blue', lwd=1, lty=2))))
}

pH Reaction Classes

Description

Levels of pH (reaction) classes including descriptive name, and range from low to high pH

Usage

data(reactionclass)

Format

An object of class data.frame with 11 rows and 3 columns.

References

Soil Science Division Staff. (2017) Soil Survey Manual. C. Ditzler, K. Scheffe, and H.C. Monger (eds.). USDA Handbook 18. Government Printing Office, Washington, D.C.


Rebuild a SoilProfileCollection object

Description

Rebuild a SoilProfileCollection object

Usage

rebuildSPC(x)

Arguments

x

a SoilProfileCollection object

Details

Attempt rebuilding a SoilProfileCollection object by splitting into components and re-assembling. Likely only used to fix outdated SoilProfileCollection objects that are missing slots.

Value

A valid SoilProfileCollection object.

A valid SoilProfileCollection object.

Author(s)

D.E. Beaudette

D.E. Beaudette, A.G. Brown

See Also

checkSPC Rebuild a SoilProfileCollection object

Rebuild a SoilProfileCollection object

Attempt rebuilding a SoilProfileCollection object by splitting into components and re-assembling. Likely only used to fix outdated SoilProfileCollection objects that are missing slots.

checkSPC


Select a subset of columns from a SoilProfileCollection

Description

Reduce the number of columns in a SoilProfileCollection to a minimal set plus additional selected columns. Optional metadata columns are included if set. At a minimum the profile ID, horizon top and bottom depths, and horizon ID are included. Horizon designation and horizon texture class column names are included if metadata attributes are set. See details.

Usage

reduceSPC(p, column_names = NULL)

Arguments

p

a SoilProfileCollection

column_names

a set of additional columns to include in the result

Details

Minimum column names included (when column_names = NULL)

  • idname(p), horizonDepths(p), hzidname(p)

Optional column names included (when metadata are set)

  • hzdesgnname(p), hztexclname(p), GHL(p)

Value

a SoilProfileCollection

See Also

hzdesgnname() hztexclname() GHL()


Re-order corrupted horizon data

Description

This is a method made available primarily to repair horizon data that have been corrupted relative to their order at time of SoilProfileCollection construction.

There is an option to specify the target order, but this will not update the corresponding metadata entry tracking the original order. Use this functionality at your own risk.

Usage

## S4 method for signature 'SoilProfileCollection'
reorderHorizons(object, target.order = NULL)

Arguments

object

A SoilProfileCollection

target.order

A numeric vector of equal length to object. Default value is NULL which restores the internal order of the collection.

Value

SoilProfileCollection


Repair Problematic Lower Horizon Depths

Description

Attempt a simple repair of horizon bottom depths in the presence of NA, or in cases where the horizon shares a common top and bottom depth. Both situations are common in pedon description where "contact" (Cd, Cr, R, etc.) was described without a lower depth.

Usage

repairMissingHzDepths(x, adj = 10, max.depth = 200)

Arguments

x

SoilProfileCollection

adj

vertical offset applied to "repair" missing bottom depths when top and bottom depth are equal or bottom depth is missing. (NA to use max.depth)

max.depth

If adj is NA, or the resulting offset sum exceeds max.depth, max.depth is used.

Details

This repair is applied to the deepest horizon within a profile as identified by getLastHorizonID, as well as to bottom depths of any horizon that has a horizon below it. Horizon bottom depths are adjusted by adding adj (if non-NA). If the resulting value exceeds max.depth, the max.depth value is returned (if not NA).

Value

SoilProfileCollection with a new (logical) horizon-level attribute .repaired marking affected horizons

Examples

h <- data.frame(
id = c(1, 1, 1, 2, 2, 2, 2, 3, 3),
top = c(0:2, 0:3, 0:1) * 10,
bottom = c(rep(NA_integer_, 7), c(10, 99))
)

# NA depths result in warnings
suppressWarnings({
  depths(h) <- id ~ top + bottom
})

# inspect data before repairs
plotSPC(h)

g <- repairMissingHzDepths(h)

# all depth logic now valid
all(checkHzDepthLogic(g)$valid)

# inspect
plotSPC(g)

# no adj, max.depth only
f <- repairMissingHzDepths(h, adj = NA, max.depth = 200)
all(checkHzDepthLogic(f)$valid)
plotSPC(f)

# max.depth defaults to max(x) if too small
f$bottom[c(3,7)] <- NA
d <- repairMissingHzDepths(f, adj = NA, max.depth = 20)
all(checkHzDepthLogic(d)$valid)
plotSPC(d)

Replace Data in Horizon Slot

Description

Replaces horizon data with new data.frame object.

Usage

## S4 replacement method for signature 'SoilProfileCollection'
replaceHorizons(object) <- value

Arguments

object

A SoilProfileCollection

value

An object inheriting data.frame

Examples

# load test data
data(sp2)

# promote to SPC
depths(sp2) <- id ~ top + bottom

# one profile
p <- sp2[1,]

# 23 variables in horizon data
length(horizonNames(sp2))

# remove all but essential ones
replaceHorizons(p) <- horizons(p)[,c(idname(p), hzidname(p), horizonDepths(p))]

# inspect result (a clean slate)
horizons(p)

Get or Set Restriction data in a SoilProfileCollection

Description

Restrictions describe root-limiting features in the soil. A single profile may have multiple restrictions.

  • restrictions() (get method): Get restriction data from a SoilProfileCollection.

  • ⁠restrictions<-⁠ (set method): Set restriction data for a SoilProfileCollection. The profile ID column from object (idname(object)) must be present in the replacement value object.

Usage

## S4 method for signature 'SoilProfileCollection'
restrictions(object)

## S4 replacement method for signature 'SoilProfileCollection'
restrictions(object) <- value

Arguments

object

A SoilProfileCollection

value

An data.frame object containing at least a column with name idname(object)

Examples

# load test data
data(sp2)

# promote to SPC
depths(sp2) <- id ~ top + bottom

# assign abrupt textural change to a profile
newdata <- data.frame(id = c("hon-21"),
                      restrkind = "abrupt textural change",
                      restrdep = 46)

# do left join
restrictions(sp2) <- newdata

# inspect site table: newvalue TRUE only for horizons
#  with top depth equal to zero
restrictions(sp2)

sRGB to Munsell Color Conversion

Description

Convert sRGB color coordinates to the closest n Munsell chips in the munsell lookup table. This function will be replaced by col2Munsell() in aqp 2.1.

Usage

rgb2munsell(color, colorSpace = c("CIE2000", "LAB", "sRGB"), nClosest = 1)

Arguments

color

a data.frame or matrix object containing sRGB coordinates in the range of (0,1)

colorSpace

distance metric (colorspace) to use for finding the closest chip: CIE2000 is the most accurate but requires farver >= 2.0.3, Euclidean distance in CIELAB is a close second, while Euclidean distance in sRGB is not at all accurate and should only be used for demonstration purposes.

nClosest

number of closest Munsell colors to return (valid range is 1-20)

Value

an (NA-padded) data.frame containing hue, value, chroma, and distance (dE00 when colorSpace = 'CIE2000', Euclidean distance otherwise) to nearest matching color.

Note

This function is fully vectorized and will pad output with NA-records when NA are present in color.

Author(s)

D.E. Beaudette

References

http://ncss-tech.github.io/AQP/ http://www.brucelindbloom.com/index.html?ColorCalcHelp.html https://www.munsellcolourscienceforpainters.com/MunsellAndKubelkaMunkToolbox/MunsellAndKubelkaMunkToolbox.html http://www.cis.rit.edu/mcsl/online/munsell.php

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

# Munsell notation to sRGB triplets [0-1] 
color <- munsell2rgb(
  the_hue = c('10YR', '2.5YR', '5YR'), 
  the_value = c(3, 5, 2.5), 
  the_chroma = c(5, 6, 2), 
  return_triplets = TRUE
)

# result is a data.frame
color

# back-transform sRGB -> closest Munsell color
# sigma is the dE00 color contrast metric
rgb2munsell(color)

Average Hydraulic Parameters from the ROSETTA Model by USDA Soil Texture Class

Description

Average soil hydraulic parameters generated by the first stage predictions of the ROSETTA model by USDA soil texture class. These data were extracted from ROSETTA documentation and re-formatted for ease of use.

Usage

data(ROSETTA.centroids)

Format

A data frame:

texture

soil texture class, ordered from low to high available water holding capacity

theta_r

average saturated water content

theta_s

average residual water content

alpha

average value, related to the inverse of the air entry suction, log10-transformed values with units of cm

npar

average value, index of pore size distribution, log10-transformed values with units of 1/cm

theta_r_sd

1 standard deviation of theta_r

theta_s_sd

1 standard deviation of theta_s

alpha_sd

1 standard deviation of alpha

npar_sd

1 standard deviation of npar

sat

approximate volumetric water content at which soil material is saturated

fc

approximate volumetric water content at which matrix potential = -33kPa

pwp

approximate volumetric water content at which matrix potential = -1500kPa

awc

approximate available water holding capacity: VWC(-33kPa)

  • VWC(-1500kPa)

Details

Theoretical water-retention parameters for uniform soil material of each texture class have been estimated via van Genuchten model.

See the related tutorial

Source

ROSETTA Class Average Hydraulic Parameters

References

van Genuchten, M.Th. (1980). "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils". Soil Science Society of America Journal. 44 (5): 892-898.

Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 2001. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251(3–4): 163-176.

Examples

## Not run: 

library(aqp)
library(soilDB)
library(latticeExtra)

data("ROSETTA.centroids")

# iterate over horizons and generate VG model curve
res <- lapply(1:nrow(ROSETTA.centroids), function(i) {
  m <- KSSL_VG_model(VG_params = ROSETTA.centroids[i, ], phi_min = 10^-3, phi_max=10^6)$VG_curve
  # copy generalized hz label
  m$hz <- ROSETTA.centroids$hz[i]
  # copy ID
  m$texture_class <- ROSETTA.centroids$texture[i]
  return(m)
})

# copy over lab sample number as ID
res <- do.call('rbind', res)

# check: OK
str(res)


# visual check: OK
xyplot(
  phi ~ theta | texture_class, data=res,
  type=c('l', 'g'),
  scales=list(alternating=3, x=list(tick.number=10), y=list(log=10, tick.number=10)),
  yscale.components=yscale.components.logpower,
  ylab=expression(Suction~~(kPa)),
  xlab=expression(Volumetric~Water~Content~~(cm^3/cm^3)),
  par.settings = list(superpose.line=list(col='RoyalBlue', lwd=2)),
  strip=strip.custom(bg=grey(0.85)),
  as.table=TRUE
)



## End(Not run)

Soil Morphologic, Geochemical, and Mineralogy Data from Rowley et al. 2019.

Description

Data from Table 1 and Supplementary Tables 1 and 2 from "A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland".

Usage

data(rowley2019)

Format

A SoilProfileCollection object:

site-level attributes

id

profile ID

group

profile group

horizon-level attributes

sample_id

sample ID

name

horizon name

pH

pH

Al_exch

cmol(+) / kg, exchangeable Al

Ca_exch

cmol(+) / kg, exchangeable Ca

CEC_sum

cmol(+) / kg, cation exchange capacity calculated as the sum of exchangeable cations, not including H+

Ca_exch_saturation

percent

Al_exch_saturation

percent

TON

percent, total nitrogen

SOC

percent, soil organic carbon

C_to_N

carbon to nitrogen ratio

Alo

g/kg, oxalate-extractable Al

Feo

g/kg, oxalate-extractable Fe

Ald

g/kg, dithionite-extractable Al

Fed

g/kg, dithionite-extractable Fe

Feo_Fed

Fe_o to Fe_d ratio

id

profile ID

top

horizon top (cm)

bottom

horizon bottom (cm)

Al

g/kg by x-ray fluorescence

Ca

g/kg by x-ray fluorescence

Cr

g/kg by x-ray fluorescence

Fe

g/kg by x-ray fluorescence

K

g/kg by x-ray fluorescence

Mg

g/kg by x-ray fluorescence

Mn

g/kg by x-ray fluorescence

Na

g/kg by x-ray fluorescence

Ni

g/kg by x-ray fluorescence

P

g/kg by x-ray fluorescence

Si

g/kg by x-ray fluorescence

Ti

g/kg by x-ray fluorescence

Phyllosilicates

percent by x-ray diffraction spectra

Quartz

percent by x-ray diffraction spectra

K_Feldspar

percent by x-ray diffraction spectra

Na_Plagioclase

percent by x-ray diffraction spectra

Goethite

percent by x-ray diffraction spectra

Unidentified

percent by x-ray diffraction spectra

CCE_Total

percent

CCE_Reactive

percent

Reactive_carbonate

percent

Sand

percent <2um

Silt

percent 2-50um

Clay

percent 50-2000um

CaH2O

Milliq ex: grams of Ca per kilogram of dry soil (g kg-1)

Ca2MKCl

2M KCl: grams of Ca per kilogram of dry soil (g kg-1)

CaNa2EDTA

0.05 M Na2EDTA: grams of Ca per kilogram of dry soil (g kg-1)

CaCuCl2

0.5 M CuCl2: grams of Ca per kilogram of dry soil (g kg-1)

hzID

horizon ID

References

Mike C. Rowley, Stephanie Grand, Thierry Adatte, Eric P. Verrecchia, Cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils), Switzerland, Geoderma, 2019, 114065, ISSN 0016-7061, doi:10.1016/j.geoderma.2019.114065.

Examples

library(lattice)

# load data
data('rowley2019')

# check first 5 rows and 10 columns of horizon data
horizons(rowley2019)[1:5, 1:10]

# check site data
site(rowley2019)

# graphical summary
par(mar=c(1,1,3,1))
plotSPC(rowley2019, color='Feo_Fed', name='name', cex.names=0.85)

plotSPC(rowley2019, color='Ca_exch', name='name', cex.names=0.85)

# grouped plot
groupedProfilePlot(rowley2019, groups = 'group', color='Ca_exch',
name='name', cex.names=0.85, group.name.offset = -10)

# aggregate over 1cm slices, for select properties
a <- slab(rowley2019, group ~ Reactive_carbonate + Ca_exch + pH + K_Feldspar + Na_Plagioclase + Al)

# plot styling
tps <- list(superpose.line=list(lwd=2, col=c('royalblue', 'firebrick')))

# make the figure
xyplot(top ~ p.q50 | variable, data=a, ylab='Depth', groups=group,
       main='', as.table=TRUE,
       xlab='median bounded by 25th and 75th percentiles',
       lower=a$p.q25, upper=a$p.q75, ylim=c(55,-5),
       panel=panel.depth_function,
       prepanel=prepanel.depth_function,
       cf=a$contributing_fraction,
       alpha=0.33, sync.colors=TRUE,
       scales=list(x=list(relation='free', alternating=1)),
       par.settings=tps,
       auto.key=list(columns=2, lines=TRUE, points=FALSE),
       strip=strip.custom(bg=grey(0.9))
)

Fix Overlap within a Sequence via Simulated Annealing

Description

This function makes small adjustments to elements of x until overlap defined by thresh is removed, or until maxIter is reached. Rank order and boundary conditions (defined by min.x and max.x) are preserved. The underlying algorithm is based on simulated annealing. The "cooling schedule" parameters T0 and k can be used to tune the algorithm for specific applications.

Usage

SANN_1D(
  x,
  thresh = 0.6,
  adj = thresh * 2/3,
  min.x = min(x) - 0.2,
  max.x = max(x) + 0.2,
  maxIter = 1000,
  trace = FALSE,
  tiny = 1e-04,
  T0 = 500,
  k = 10,
  ...
)

Arguments

x

vector of horizontal positions, pre-sorted

thresh

horizontal threshold defining "overlap" or distance between elements of x. For adjusting soil profile sketches values are typically < 1 and likely in (0.3, 0.8).

adj

specifies the size of perturbations within runif(min = adj * -1, max = adj). Larger values will sometimes reduce the number of iterations required to solve particularly difficult overlap conditions. See coolingRate argument when adj is large

min.x

left-side boundary condition, consider expanding if a solution cannot be found within maxIter.

max.x

right-side boundary condition, consider expanding if a solution cannot be found within maxIter.

maxIter

maximum number of iterations to attempt before giving up and returning a regularly-spaced sequence

trace

print diagnostics, result is a list vs vector

tiny

the smallest allowable overlap

T0

starting temperature

k

cooling constant

...

not used, absorbs additional arguments to fixOverlap()

Details

Ideas for solving difficult overlap scenarios:

  • widen the boundary conditions by adjusting min.x and max.x beyond the original scale of x

  • reduce the allowable overlap threshold thresh

  • reduce the magnitude of perturbations (adj) and increase maxIter

  • increase k

Value

When trace = FALSE, a vector of the same length as x, preserving rank-ordering and boundary conditions. When trace = TRUE a list containing the new sequence along with information about objective functions and decisions made during iteration.

Author(s)

D.E. Beaudette and K.C. Thompson

See Also

electroStatics_1D(), fixOverlap()

Examples

x <- c(1, 2, 3, 3.4, 3.5, 5, 6, 10)

# easy
z <- fixOverlap(x, thresh = 0.2, trace = TRUE)

# harder
z <- fixOverlap(x, thresh = 0.6, trace = TRUE)

# much harder
z <- fixOverlap(x, thresh = 0.9, trace = TRUE)


# interpret `trace` output

# relatively challenging
x <- c(1, 2, 3.4, 3.4, 3.4, 3.4, 6, 8, 10, 12, 13, 13, 15, 15.5)

# fix overlap, return debugging information
set.seed(10101)
z <- fixOverlap(x, thresh = 0.8, trace = TRUE)

# setup plot device
par(mar = c(4, 4, 1, 1))
layout(matrix(c(1,2,3)), widths = 1, heights = c(1,1,2))

# objective function = overlap + SSD
plot(
  seq_along(z$stats), z$stats, 
  type = 'h', las = 1,
  xlab = 'Iteration', ylab = 'Overlap',
  cex.axis = 0.8
)

# SSD: deviation from original configuration 
plot(
  seq_along(z$ssd), z$ssd, 
  type = 'h', las = 1,
  xlab = 'Iteration', ylab = 'Deviation',
  cex.axis = 0.8
)
# adjustments at each iteration
matplot(
  z$states, type = 'l', 
  lty = 1, las = 1, 
  xlab = 'Iteration', ylab = 'x-position'
)

# trace log
# B: boundary condition violation
# O: rank (order) violation
# +: accepted perturbation
# -: rejected perturbation
table(z$log)

Shannon Entropy

Description

A very simple implementation of Shannon entropy.

Usage

shannonEntropy(x, b = 2)

Arguments

x

vector of probabilities (0,1), must sum to 1, should not contain NA

b

logarithm base

Details

0s are automatically removed by na.rm = TRUE, as (0 * log(0) = Nan)

Value

A single numeric value.

Note

When b = length(x) the result is the normalized Shannon entropy of (Kempen et al, 2009).

References

Kempen, Bas, Dick J. Brus, Gerard B.M. Heuvelink, and Jetse J. Stoorvogel. 2009. "Updating the 1:50,000 Dutch Soil Map Using Legacy Soil Data: A Multinominal Logistic Regression Approach." Geoderma 151: 311-26. doi:10.1016/j.geoderma.2009.04.023

Shannon, Claude E. (July-October 1948). "A Mathematical Theory of Communication". Bell System Technical Journal. 27 (3): 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x

Examples

# a very simple example
p <- c(0.25, 0.25, 0.4, 0.05, 0.05)

shannonEntropy(p)

Soil Physical and Chemical Data Related to Studies in the Sierra Nevada Mountains, CA, USA.

Description

Soil physical and chemical data associated with two bio-climatic sequences (granitic and andesitic parent material) from the western flank of the Sierra Nevada mountains.

Usage

data(sierraTransect)

Format

An object of class SoilProfileCollection of length 14.

Details

These data were assembled from Dahlgren et al. (1997) and Rasmussen et al. (2007), with permission granted by lead authors, by D.E. Beaudette.

Source

Original manuscripts and personal communication with authors.

References

R.A. Dahlgren, J.L. Boettinger, G.L. Huntington, R.G. Amundson. Soil development along an elevational transect in the western Sierra Nevada, California, Geoderma, Volume 78, Issues 3–4, 1997, Pages 207-236.

Rasmussen, C., Matsuyama, N., Dahlgren, R.A., Southard, R.J. and Brauer, N. (2007), Soil Genesis and Mineral Transformation Across an Environmental Gradient on Andesitic Lahar. Soil Sci. Soc. Am. J., 71: 225-237.

Examples

data(sierraTransect)

# tighter margins
op <- par(mar=c(0,0,0,0))

# quick sketch
plotSPC(sierraTransect, name.style = 'center-center', width=0.3)

# split by transect
par(mar=c(0,0,1,1))
groupedProfilePlot(
sierraTransect, groups='transect',
group.name.offset = -15, width=0.3,
name.style='center-center'
)

# thematic
groupedProfilePlot(
sierraTransect, groups='transect',
group.name.offset = -15, width=0.3,
name.style='center-center', color='Fe_o_to_Fe_d'
)

# horizon boundary viz
sierraTransect$hzd <- hzDistinctnessCodeToOffset(substr(sierraTransect$hz_boundary, 0, 1))

groupedProfilePlot(
sierraTransect, groups='transect', group.name.offset = -15,
width=0.3, name.style='center-center', color='Fe_o_to_Fe_d',
hz.distinctness.offset='hzd')


# split transects
g <- subset(sierraTransect, transect == 'Granite')
a <- subset(sierraTransect, transect == 'Andesite')

g.order <- order(g$elev)
a.order <- order(a$elev)

# order (left -> right) by elevation
par(mar=c(2,0,0,2), mfrow=c(2,1))
plot(g, width=0.3, name.style='center-center', cex.names=0.75, plot.order=g.order)
axis(1, at=1:length(g), labels=g$elev[g.order], line=-1.5)

plot(a, width=0.3, name.style='center-center', cex.names=0.75, plot.order=a.order)
axis(1, at=1:length(a), labels=a$elev[a.order], line=-1.5)


par(op)

DEPRECATED Simulate Soil Profiles

Description

Simulate a collection of soil profiles based on the horizonation of a single soil profile. Now deprecated: use perturb() for perturbations of horizon thicknesses or boundaries.

Usage

sim(x, n = 1, iterations = 25, hz.sd = 2, min.thick = 2)

Arguments

x

a SoilProfileCollection object containing a single profile from which to draw simulated data

n

the number of requested simulations

iterations

sampling iterations used to determine each horizon thickness

hz.sd

standard deviation used to simulate horizon thickness, can be a vector but must divide evenly into the number of horizons found in x

min.thick

minimum horizon thickness allowed in simulation results

Details

This function generates a collection of simulated soil profiles based on the horizon thickness data associated with a single "template" profile. Simulation is based on sampling from a family of Gaussian distribution with means defined by the "template" profile and standard deviation defined by the user.

Value

A SoilProfileCollection object with n simulated profiles, each containing the same number of horizons and same data as x

Author(s)

D. E. Beaudette

See Also

random_profile perturb

Examples

# please see documentation for perturb() for examples
#  the sim() function calls perturb() internally

Simulate Soil Colors

Description

Simulate plausible soil colors based on several possible parameterization of a "range in characteristics" (RIC). Soil color RIC can be specified by a list of parameters:

  • soil color proportions, as output from aggregateColor()method = 'proportions'

  • most likely Munsell color, CIE2000 threshold, and vector of acceptable hues – method = 'dE00'

  • data.frame of Munsell hue, value, and chroma representing observed soil colors – method = 'mvnorm'

Usage

simulateColor(
  method = c("dE00", "proportions", "mvnorm"),
  n,
  parameters,
  SPC = NULL
)

Arguments

method

simulation method, see details

n

number of simulated colors per group

parameters

a list, format depends on method:

  • proportions: output from aggregateColor()

  • dE00: formatted as list(m = '7.5YR 3/3', thresh = 5, hues = c('7.5YR'))

  • mvnorm: formatted as list(hvc = x)

Where m is a single representative Munsell chip, thresh is a threshold specified in CIE2000 color contrast (dE00), hues is a vector of allowed Munsell hues, and x is a data.frame representing columns of Munsell hue, value, and chroma having at least 3 rows.

SPC

SoilProfileCollection, attempt to modify SPC with simulated colors

Value

a list, unless SPC is specified, then a SoilProfileCollection object

Author(s)

D.E. Beaudette

Examples

# restrict examples to 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

# m: representative or most likely color
# thresh: dE00 threshold
# hues: allowed Munsell hues
p <- list(
  'A' = list(m = '7.5YR 3/3', thresh = 5, hues = c('7.5YR')),
  'BA' = list(m = '7.5YR 4/4', thresh = 8, hues = c('7.5YR')),
  'Bt1' = list(m = '7.5YR 4/4', thresh = 8, hues = c('5YR', '7.5YR')),
  'Bt2' = list(m = '5YR 4/5', thresh = 8, hues = c('5YR', '7.5YR')),
  'Bt3' = list(m = '10YR 4/6', thresh = 10, hues = c('10YR', '7.5YR')),
  'Cr' = list(m = '2.5G 6/2', thresh = 15, hues = c('2.5G', '2.5GY', '2.5BG'))
)

# simulate
(cols <- simulateColor(method = 'dE00', n = 10, parameters = p))

# preview
previewColors(parseMunsell(unlist(cols)), method = 'MDS')

# another example, this time using a larger dE00 threshold
p <- list(
  'A' = list(m = '7.5YR 3/3', thresh = 20, hues = c('10YR', '7.5YR', '5YR'))
)

# simulate
set.seed(54654)
cols <- simulateColor(method = 'dE00', n = 200, parameters = p)

# flatten
cols <- unlist(cols)

# tabulate, sort: most frequent color should be 7.5YR 3/3
sort(table(cols), decreasing = TRUE)

# review colors
previewColors(parseMunsell(cols))

# what does a dE00 threshold look like on 3 pages of hue?
contrastChart('7.5YR 3/3', hues = c('10YR', '7.5YR', '5YR'), thresh = 20)

Retrieve site data from SoilProfileCollection

Description

Get site data from SoilProfileCollection. Result is returned in the same data.frame class used to initially construct the SoilProfileCollection.

There are two options available via the site<- setter.

The first is a "normalization" by formula interface, whereby one specifies an attribute that is constant in horizons within profiles to be promoted to a site-level variable: site(spc) <- ~ horizonvariable

The second is creation of site data from an external data.frame via merge (LEFT JOIN). There must be one or more same-named columns (with at least some matching data) on the left and right hand side to facilitate the join: site(spc) <- newdata

Usage

## S4 method for signature 'SoilProfileCollection'
site(object)

site(object) <- value

Arguments

object

A SoilProfileCollection

value

A formula or object inheriting data.frame

Examples

# load test data
data(sp2)

# promote to SPC
depths(sp2) <- id ~ top + bottom

# normalize a horizon-level attribute to site
site(sp2) <- ~ surface

# inspect site table
site(sp2)

# make some data: classify two geomorphic surfaces with numeric value
newdata <- data.frame(surface = c("holocene",
                                  "lower riverbank"),
                      newvalue = c(1,2))

# do left join based on newly-normalized "surface" attribute
site(sp2) <- newdata

# inspect site table: holocene & lower riverbank have values
site(sp2)

Set site column names

Description

Set site column names

Get names of columns in site table.

Usage

## S4 replacement method for signature 'SoilProfileCollection'
siteNames(object) <- value

## S4 method for signature 'SoilProfileCollection'
siteNames(object)

Arguments

object

a SoilProfileCollection

value

a unique vector of equal length to number of columns in site: length(siteNames(object))


Slab-Wise Aggregation of SoilProfileCollection Objects

Description

Aggregate soil properties along user-defined slabs, and optionally within groups.

Usage

## S4 method for signature 'SoilProfileCollection'
slab(
  object,
  fm,
  slab.structure = 1,
  strict = FALSE,
  byhz = TRUE,
  slab.fun = slab_function(method = "numeric"),
  cpm = 1,
  weights = NULL,
  ...
)

slab_function(
  method = c("numeric", "factor", "hd", "weighted.numeric", "weighted.factor", "fast")
)

Arguments

object

a SoilProfileCollection

fm

A formula: either groups ~ var1 + var2 + var3 where named variables are aggregated within ⁠groups' OR where named variables are aggregated across the entire collection ⁠ ~ var1 + var2 + var3⁠. If ⁠groups⁠is a factor it must not contain⁠NA'

slab.structure

A user-defined slab thickness (defined by an integer), or user-defined structure (numeric vector). See details below.

strict

logical: should horizons be strictly checked for self-consistency?

byhz

logical: should horizons or whole profiles be removed by logic checks in strict? Default TRUE removes only offending horizons, FALSE removes whole profiles with one or more illogical horizons.

slab.fun

Function used to process each 'slab' of data, ideally returning a vector with names attribute. Defaults to a wrapper function around stats::quantile(). See details.

cpm

Strategy for normalizing slice-wise probabilities, dividing by either: number of profiles with data at the current slice (cpm=1), or by the number of profiles in the collection (cpm=2). Mode 1 values will always sum to the contributing fraction, while mode 2 values will always sum to 1.

weights

Column name containing site-level weights

...

further arguments passed to slab.fun

method

one of "numeric", "factor", "hd", "weighted.numeric", "weighted.factor", "fast"

Details

Multiple continuous variables OR a single categorical (factor) variable can be aggregated within a call to slab. Basic error checking is performed to make sure that top and bottom horizon boundaries make sense. User-defined aggregate functions (slab.fun) should return a named vector of results. A new, named column will appear in the results of slab for every named element of a vector returned by slab.fun. See examples below for a simple example of a slab function that computes mean, mean-1SD and mean+1SD. The default slab function wraps stats::quantile from the Hmisc package, which requires at least 2 observations per chunk. Note that if group is a factor it must not contain NAs.

slab() uses dice() to "resample" profiles to 1cm slices from depth 0 to max(x) (or slab.structure[2], if defined).

Sometimes slab is used to conveniently re-arrange data vs. aggregate. This is performed by specifying identity in slab.fun. See examples beflow for a demonstration of this functionality.

The default slab.fun was changed 2019-10-30 from a wrapper around Hmisc::hdquantile to a wrapper around stats::quantile. See examples below for a simple way to switch to the HD quantile estimator.

Execution time scales linearly (slower) with the total number of profiles in object, and exponentially (faster) as the number of profiles / group is increased. slab and slice are much faster and require less memory if input data are either numeric or character.

There are several possible ways to define slabs, using slab.structure:

a single integer

e.g. 10: data are aggregated over a regular sequence of 10-unit thickness slabs

a vector of 2 integers

e.g. c(50, 60): data are aggregated over depths spanning 50–60 units

a vector of 3 or more integers

e.g. c(0, 5, 10, 50, 100): data are aggregated over the depths spanning 0–5, 5–10, 10–50, 50–100 units

slab_function(): The default "numeric" aggregation method is the "fast" numeric (quantile) method. Additional methods include "factor" for categorical data, "hd" to use the Harrell-Davis Distribution-Free Quantile Estimator from the Hmisc package, and "weighted" to use a weighted quantile method from the Hmisc package

Value

Output is returned in long format, such that slice-wise aggregates are returned once for each combination of grouping level (optional), variable described in the fm argument, and depth-wise 'slab'.

Aggregation of numeric variables, using the default slab function:

variable

The names of variables included in the call to slab.

groupname

The name of the grouping variable when provided, otherwise a fake grouping variable named 'all.profiles'.

p.q5

The slice-wise 5th percentile.

p.q25

The slice-wise 25th percentile

p.q50

The slice-wise 50th percentile (median)

p.q75

The slice-wise 75th percentile

p.q95

The slice-wise 95th percentile

top

The slab top boundary.

bottom

The slab bottom boundary.

contributing_fraction

The fraction of profiles contributing to the aggregate value, ranges from 1/n_profiles to 1.

When a single factor variable is used, slice-wise probabilities for each level of that factor are returned as:

variable

The names of variables included in the call to slab.

groupname

The name of the grouping variable when provided, otherwise a fake grouping variable named 'all.profiles'.

A

The slice-wise probability of level A

B

The slice-wise probability of level B

list()
n

The slice-wise probability of level n

top

The slab top boundary.

bottom

The slab bottom boundary.

contributing_fraction

The fraction of profiles contributing to the aggregate value, ranges from 1/n_profiles to 1.

slab_function(): return an aggregation function based on the method argument

Methods

data = "SoilProfileCollection"

Typical usage, where input is a SoilProfileCollection.

Note

Arguments to slab have changed with aqp 1.5 (2012-12-29) as part of a code clean-up and optimization. Calculation of weighted-summaries was broken in aqp 1.2-6 (2012-06-26), and removed as of aqp 1.5 (2012-12-29). slab replaced the previously defined soil.slot.multiple function as of aqp 0.98-8.58 (2011-12-21).

Author(s)

D.E. Beaudette

References

D.E. Beaudette, P. Roudier, A.T. O'Geen, Algorithms for quantitative pedology: A toolkit for soil scientists, Computers & Geosciences, Volume 52, March 2013, Pages 258-268, 10.1016/j.cageo.2012.10.020.

Harrell FE, Davis CE (1982): A new distribution-free quantile estimator. Biometrika 69:635-640.

See Also

slice, quantile

Examples

##
## basic examples
##
library(lattice)
library(grid)
library(data.table)

# load sample data, upgrade to SoilProfileCollection
data(sp1)
depths(sp1) <- id ~ top + bottom

hzdesgnname(sp1) <- "name"

# aggregate entire collection with two different segment sizes
a <- slab(sp1, fm = ~ prop)
b <- slab(sp1, fm = ~ prop, slab.structure=5)

# check output
str(a)

# stack into long format
ab <- make.groups(a, b)
ab$which <- factor(ab$which, levels=c('a','b'),
labels=c('1-cm Interval', '5-cm Interval'))

# plot median and IQR
# custom plotting function for uncertainty viz.
xyplot(top ~ p.q50 | which, data=ab, ylab='Depth',
			 xlab='median bounded by 25th and 75th percentiles',
			 lower=ab$p.q25, upper=ab$p.q75, ylim=c(250,-5),
			 panel=panel.depth_function,
			 prepanel=prepanel.depth_function,
			 cf=ab$contributing_fraction,
			 alpha=0.5,
			 layout=c(2,1), scales=list(x=list(alternating=1))
			 )


###
### re-arrange data / no aggregation
###

# load sample data, upgrade to SoilProfileCollection
data(sp1)
depths(sp1) <- id ~ top + bottom

# arrange data by ID
a <- slab(sp1, fm = id ~ prop, slab.fun=identity)

# convert id to a factor for plotting
a$id <- factor(a$id)

# check output
str(a)

# plot via step function
xyplot(top ~ value | id, data=a, ylab='Depth',
       ylim=c(250, -5), as.table=TRUE,
       panel=panel.depth_function,
       prepanel=prepanel.depth_function,
       scales=list(x=list(alternating=1))
)

##
## categorical variable example
##

data(sp1)
depths(sp1) <- id ~ top + bottom

# normalize horizon names: result is a factor
sp1$name <- generalize.hz(
  sp1$name,
  new = c('O','A','B','C'),
  pat = c('O', '^A','^B','C')
  )

# compute slice-wise probability so that it sums to contributing fraction, from 0-150
a <- slab(sp1, fm= ~ name, cpm=1, slab.structure=0:150)

# convert wide -> long for plotting
# result is a data.table
# genhz factor levels are set by order in `measure.vars`
a.long <- data.table::melt(
  data.table::as.data.table(a),
  id.vars = c('top','bottom'),
  measure.vars = c('O', 'A', 'B', 'C'),
  )


# plot horizon type proportions using panels
xyplot(top ~ value | variable,
       data = a.long, subset=value > 0,
       col = 1, lwd = 2,
       xlab = 'Class Probability',
       ylab = 'Depth (cm)',
       strip = strip.custom(bg = grey(0.85)),
       scales = list(x = list(alternating = FALSE)),
       ylim = c(150, -5), type=c('S','g'),
       horizontal = TRUE, layout = c(4,1)
       )

# again, this time using groups
xyplot(top ~ value,
       data = a.long,
       groups = variable,
       subset = value > 0,
       ylim = c(150, -5),
       type = c('S','g'),
       horizontal = TRUE,
       asp = 2,
       lwd = 2,
       auto.key = list(
         lines = TRUE,
         points = FALSE,
         cex = 0.8,
         columns = 1,
         space = 'right'
       )
)

# adjust probability to size of collection, from 0-150
a.1 <- slab(sp1, fm= ~ name, cpm = 2, slab.structure = 0:150)

# convert wide -> long for plotting
# result is a data.table
# genhz factor levels are set by order in `measure.vars`
a.1.long <- data.table::melt(
  data.table::as.data.table(a.1),
  id.vars = c('top','bottom'),
  measure.vars = c('O','A','B','C')
)

# combine aggregation from `cpm` modes 1 and 2
g <- make.groups(cmp.mode.1 = a.long, cmp.mode.2 = a.1.long)

# plot horizon type proportions
xyplot(top ~ value | variable,
       groups = which,
       data = g, subset = value > 0,
       ylim = c(240, -5),
       type = c('S','g'),
       horizontal = TRUE,
       layout = c(4,1),
       auto.key = list(lines = TRUE, points = FALSE, columns = 2),
       par.settings = list(superpose.line = list(col = c(1, 2), lwd = 2)),
       scales = list(alternating = 3),
       xlab = 'Class Probability',
       ylab = 'Depth (cm)',
       strip = strip.custom(bg = grey(0.85))
)


# apply slice-wise evaluation of max probability, and assign ML-horizon at each slice
gen.hz.ml <- get.ml.hz(a, c('O','A','B','C'))


## Not run: 
##
## HD quantile estimator
##

library(soilDB)
library(lattice)
library(data.table)

# sample data
data('loafercreek', package = 'soilDB')

# defaul slab.fun wraps stats::quantile()
a <- slab(loafercreek, fm = ~ total_frags_pct + clay)

# use HD quantile estimator from Hmisc package instead
a.HD <- slab(loafercreek, fm = ~ total_frags_pct + clay, slab.fun = aqp:::.slab.fun.numeric.HD)

# combine
g <- make.groups(standard=a, HD=a.HD)

# note differences
densityplot(~ p.q50 | variable, data=g, groups=which,
            scales=list(relation='free', alternating=3, tick.number=10, y=list(rot=0)),
            xlab='50th Percentile', pch=NA, main='Loafercreek',
            auto.key=list(columns=2, points=FALSE, lines=TRUE),
            par.settings=list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2')))
)

# differences are slight but important
xyplot(
  top ~ p.q50 | variable, data=g, groups=which,
  xlab='Value', ylab='Depth (cm)',
  asp=1.5, main='Loafercreek',
  lower=g$p.q25, upper=g$p.q75,
  sync.colors=TRUE, alpha=0.25, cf=g$contributing_fraction,
  ylim=c(115,-5), layout=c(2,1), scales=list(x=list(relation='free')),
  par.settings=list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2'))),
  strip=strip.custom(bg=grey(0.85)),
  panel=panel.depth_function,
  prepanel=prepanel.depth_function,
  auto.key=list(columns=2, lines=TRUE, points=FALSE)
)

##
## multivariate examples
##
data(sp3)

# add new grouping factor
sp3$group <- 'group 1'
sp3$group[as.numeric(sp3$id) > 5] <- 'group 2'
sp3$group <- factor(sp3$group)

# upgrade to SPC
depths(sp3) <- id ~ top + bottom
site(sp3) <- ~ group

# custom 'slab' function, returning mean +/- 1SD
mean.and.sd <- function(values) {
  m <- mean(values, na.rm=TRUE)
  s <- sd(values, na.rm=TRUE)
  upper <- m + s
  lower <- m - s
  res <- c(mean=m, lower=lower, upper=upper)
  return(res)
}

# aggregate several variables at once, within 'group'
a <- slab(sp3, fm = group ~ L + A + B, slab.fun = mean.and.sd)

# check the results:
# note that 'group' is the column containing group labels
xyplot(
  top ~ mean | variable, data=a, groups=group,
  lower=a$lower, upper=a$upper,
  sync.colors=TRUE, alpha=0.5,
  cf = a$contributing_fraction,
  xlab = 'Mean Bounded by +/- 1SD',
  ylab = 'Depth (cm)',
  ylim=c(125,-5), layout=c(3,1),
  scales=list(x=list(relation='free')),
  par.settings = list(superpose.line=list(lwd=2, col=c('RoyalBlue', 'Orange2'))),
  panel = panel.depth_function,
  prepanel = prepanel.depth_function,
  strip = strip.custom(bg=grey(0.85)),
  auto.key = list(columns=2, lines=TRUE, points=FALSE)
)


# compare a single profile to the group-level aggregate values
a.1 <- slab(sp3[1, ], fm = group ~ L + A + B, slab.fun = mean.and.sd)

# manually update the group column
a.1$group <- 'profile 1'

# combine into a single data.frame:
g <- rbind(a, a.1)

# plot with customized line styles
xyplot(
  top ~ mean | variable, data=g, groups=group, subscripts=TRUE,
  lower=a$lower, upper=a$upper, ylim=c(125,-5),
  layout=c(3,1), scales=list(x=list(relation='free')),
  xlab = 'Mean Bounded by +/- 1SD',
  ylab = 'Depth (cm)',
  panel=panel.depth_function,
  prepanel=prepanel.depth_function,
  sync.colors = TRUE, alpha = 0.25,
  par.settings = list(
    superpose.line = list(
      col = c('orange', 'royalblue', 'black'),
      lwd = 2, lty = c(1,1,2)
    )
  ),
  strip = strip.custom(bg=grey(0.85)),
  auto.key = list(columns=3, lines=TRUE, points=FALSE)
)




## again, this time for a user-defined slab from 40-60 cm
a <- slab(sp3,
          fm = group ~ L + A + B,
          slab.structure = c(40,60),
          slab.fun = mean.and.sd
)

# now we have weighted average properties (within the defined slab)
# for each variable, and each group
# convert long -> wide
data.table::dcast(
  data.table::as.data.table(a),
  formula = group + top + bottom ~ variable,
  value.var = 'mean'
)

## this time, compute the weighted mean of selected properties, by profile ID
a <- slab(sp3,
          fm = id ~ L + A + B,
          slab.structure = c(40,60),
          slab.fun = mean.and.sd
)

# convert long -> wide
data.table::dcast(
  data.table::as.data.table(a),
  formula = id + top + bottom ~ variable,
  value.var = 'mean'
)


## aggregate the entire collection, using default slab function (hdquantile)
## note the missing left-hand side of the formula
a <- slab(sp3, fm= ~ L + A + B)



## weighted-aggregation -- NOT YET IMPLEMENTED --
# load sample data, upgrade to SoilProfileCollection
data(sp1)
depths(sp1) <- id ~ top + bottom

# generate pretend weights as site-level attribute
set.seed(10101)
sp1$site.wts <- runif(n=length(sp1), min=20, max=100)

## End(Not run)

Slicing of SoilProfileCollection Objects

Description

A method for "slicing" of SoilProfileCollection objects into constant depth intervals. Now deprecated, see ⁠[dice()]⁠.

Usage

slice.fast(object, fm, top.down = TRUE, just.the.data = FALSE, strict = TRUE)

## S4 method for signature 'SoilProfileCollection'
slice(object, fm, top.down = TRUE, just.the.data = FALSE, strict = TRUE)

get.slice(h, id, top, bottom, vars, z, include = "top", strict = TRUE)

Arguments

object

a SoilProfileCollection

fm

A formula: either integer.vector ~ var1 + var2 + var3 where named variables are sliced according to integer.vector OR where all variables are sliced according to integer.vector: integer.vector ~ ..

top.down

logical, slices are defined from the top-down: 0:10 implies 0-11 depth units.

just.the.data

Logical, return just the sliced data or a new SoilProfileCollection object.

strict

Check for logic errors? Default: TRUE

h

Horizon data.frame

id

Profile ID

top

Top Depth Column Name

bottom

Bottom Depth Column Name

vars

Variables of Interest

z

Slice Depth (index).

include

Either 'top' or 'bottom'. Boundary to include in slice. Default: 'top'

Value

Either a new SoilProfileCollection with data sliced according to fm, or a data.frame.

Details

By default, slices are defined from the top-down: 0:10 implies 0-11 depth units.

Author(s)

D.E. Beaudette

References

D.E. Beaudette, P. Roudier, A.T. O'Geen, Algorithms for quantitative pedology: A toolkit for soil scientists, Computers & Geosciences, Volume 52, March 2013, Pages 258-268, 10.1016/j.cageo.2012.10.020.

See Also

slab

Examples

library(aqp)

# simulate some data, IDs are 1:20
d <- lapply(1:20, random_profile)
d <- do.call('rbind', d)

# init SoilProfileCollection object
depths(d) <- id ~ top + bottom
head(horizons(d))

# generate single slice at 10 cm
# output is a SoilProfileCollection object
s <- dice(d, fm = 10 ~ name + p1 + p2 + p3)

# generate single slice at 10 cm, output data.frame
s <- dice(d, 10 ~ name + p1 + p2 + p3, SPC = FALSE)

# generate integer slices from 0 - 26 cm
# note that slices are specified by default as "top-down"
# result is a SoilProfileCollection
# e.g. the lower depth will always by top + 1
s <- dice(d, fm = 0:25 ~ name + p1 + p2 + p3)
par(mar=c(0,1,0,1))
plotSPC(s)

# generate slices from 0 - 11 cm, for all variables
s <- dice(d, fm = 0:10 ~ .)
print(s)

# compute percent missing, for each slice,
# if all vars are missing, then NA is returned
d$p1[1:10] <- NA
s <- dice(d, 10 ~ ., SPC = FALSE, pctMissing = TRUE)
head(s)

## Not run: 
##
## check sliced data
##

# test that mean of 1 cm slices property is equal to the
# hz-thickness weighted mean value of that property
data(sp1)
depths(sp1) <- id ~ top + bottom

# get the first profile
sp1.sub <- sp1[which(profile_id(sp1) == 'P009'), ]

# compute hz-thickness wt. mean
hz.wt.mean <- with(
  horizons(sp1.sub),
  sum((bottom - top) * prop) / sum(bottom - top)
)

# hopefully the same value, calculated via slice()
s <- dice(sp1.sub, fm = 0:max(sp1.sub) ~ prop)
hz.slice.mean <- mean(s$prop, na.rm = TRUE)

# they are the same
all.equal(hz.slice.mean, hz.wt.mean)

## End(Not run)

Tukey's HSD Over Slices

Description

Apply Tukey's HSD over 1-unit depth slices.

Usage

slicedHSD(object, fm, conf = 0.95)

Arguments

object

SoilProfileCollection object

fm

a formula describing depth sequence, horizon attribute, and site (grouping) attribute. For example 0:100 ~ estimated_oc | taxonname

conf

confidence applied in TukeyHSD

Author(s)

D.E. Beaudette and Sharon Perrone


Munsell Colors of Common Soil Minerals

Description

Munsell colors for some common soil minerals.

Usage

data(soil_minerals)

Format

A data frame with 20 observations on the following 5 variables.

mineral

mineral name

color

Munsell color

hue

Munsell hue

value

Munsell value

chroma

Munsell chroma

Details

Soil color and other properties including texture, structure, and consistence are used to distinguish and identify soil horizons (layers) and to group soils according to the soil classification system called Soil Taxonomy. Color development and distribution of color within a soil profile are part of weathering. As rocks containing iron or manganese weather, the elements oxidize. Iron forms small crystals with a yellow or red color, organic matter decomposes into black humus, and manganese forms black mineral deposits. These pigments paint the soil (Michigan State Soil). Color is also affected by the environment: aerobic environments produce sweeping vistas of uniform or subtly changing color, and anaerobic (lacking oxygen), wet environments disrupt color flow with complex, often intriguing patterns and points of accent. With depth below the soil surface, colors usually become lighter, yellower, or redder.

References

  1. Lynn, W.C. and Pearson, M.J., The Color of Soil, The Science Teacher, May 2000. 2. Schwertmann, U. 1993. Relations Between Iron Oxides, Soil Color, and Soil Formation. "Soil Color". SSSA Special Publication no. 31, pages 51–69.

Examples

## Not run: 

library(aqp)
library(ape)
library(cluster)
library(farver)

# load common soil mineral colors
data(soil_minerals)

# convert Munsell to R colors
soil_minerals$col <- munsell2rgb(
  soil_minerals$hue, 
  soil_minerals$value,
  soil_minerals$chroma
)

# make a grid for plotting
n <- ceiling(sqrt(nrow(soil_minerals)))

# read from top-left to bottom-right
g <- expand.grid(x=1:n, y=n:1)[1:nrow(soil_minerals),]

# convert Munsell -> sRGB -> LAB
col.rgb <- munsell2rgb(
  soil_minerals$hue,
  soil_minerals$value,
  soil_minerals$chroma,
  return_triplets = TRUE
)

# sRGB values expected to be in the range [0,255]
col.rgb <- col.rgb * 255

# convert from sRGB -> CIE LAB
col.lab <- convert_colour(
  col.rgb , from = 'rgb',
  to = 'lab', white_from = 'D65'
)

# keep track of soil mineral names
# in a way that will persist in a dist obj
row.names(col.lab) <- soil_minerals$mineral

# perceptual distance via CIE dE00
d <- compare_colour(
  from = col.lab,
  to = col.lab,
  from_space = 'lab',
  to_space = 'lab',
  white_from = 'D65',
  method = 'CIE2000'
)

# matrix -> dist
d <- as.dist(d)

# divisive hierarchical clustering of LAB coordinates
h <- as.hclust(diana(d))
p <- as.phylo(h)

# colors, in order based on clustering
# starting from top-left
min.cols <- rev(soil_minerals$col[h$order])

# mineral names, in order based on clustering
# starting from top-left
min.names <- rev(soil_minerals$mineral[h$order])

min.munsell <- rev(soil_minerals$color[h$order])

# plot grid of mineral names / colors
layout(matrix(c(1, 2), nrow = 1), widths = c(1.25, 1))

par(mar = c(1, 0, 0, 1))
plot(g$x, g$y, pch = 15, cex = 12, axes = FALSE, xlab = '', ylab = '',
     col = min.cols, 
     xlim = c(0.5, 5.5), ylim = c(1.5, 5.5)
)
text(g$x, g$y, min.names, adj = c(0.45, 5.5), cex = 0.75, font = 2)
text(g$x, g$y, min.munsell, col = invertLabelColor(min.cols), cex = 0.85, font = 2)

title(main = 'Common Soil Pigments', line = -1.75, cex.main = 2)
mtext('U. Schwertmann, 1993. SSSA Special Publication no. 31, pages 51--69', side = 1,
      cex = 0.75, line = -1.5)

# dendrogram + tip labels with mineral colors
plot(p, cex = 0.85, label.offset = 5, font = 1)
tiplabels(pch = 15, cex = 3, offset = 2, col = soil_minerals$col)


## End(Not run)

Soil Profile Color Signatures

Description

Generate a color signature for each soil profile in a collection.

Usage

soilColorSignature(
  spc,
  r = "r",
  g = "g",
  b = "b",
  method = c("colorBucket", "depthSlices", "pam"),
  pam.k = 3,
  RescaleLightnessBy = 1,
  useProportions = TRUE,
  pigmentNames = c(".white.pigment", ".red.pigment", ".green.pigment", ".yellow.pigment",
    ".blue.pigment"),
  apply.fun = lapply
)

Arguments

spc

a SoilProfileCollection object

r

horizon level attribute containing soil color (sRGB) red values

g

horizon level attribute containing soil color (sRGB) green values

b

horizon level attribute containing soil color (sRGB) blue values

method

algorithm used to compute color signature, colorBucket, depthSlices, or pam

pam.k

number of classes to request from cluster::pam()

RescaleLightnessBy

rescaling factor for CIE LAB L-coordinate

useProportions

use proportions or quantities, see details

pigmentNames

names for resulting pigment proportions or quantities

apply.fun

function passed to aqp::profileApply(APPLY.FUN) argument, can be used to add progress bars via pbapply::pblapply, or parallel processing with furrr::future_map

Details

See the related tutorial.

Value

For the colorBucket method, a data.frame object containing:

  • id column: set according to idname(spc)

  • .white.pigment: proportion or quantity of CIE LAB L-values

  • .red.pigment: proportion or quantity of CIE LAB positive A-values

  • .green.pigment: proportion or quantity of CIE LAB negative A-values

  • .yellow.pigment: proportion or quantity of CIE LAB positive B-values

  • .blue.pigment: proportion or quantity of CIE LAB negative B-values

Column names can be adjusted with the pigmentNames argument.

For the depthSlices method ...

For the pam method ...

Author(s)

D.E. Beaudette

References

https://en.wikipedia.org/wiki/Lab_color_space

See Also

munsell2rgb

Examples

# trivial example, not very interesting
data(sp1)
depths(sp1) <- id ~ top + bottom

# convert Munsell -> sRGB triplets
rgb.data <- munsell2rgb(sp1$hue, sp1$value, sp1$chroma, return_triplets = TRUE)
sp1$r <- rgb.data$r
sp1$g <- rgb.data$g
sp1$b <- rgb.data$b

# extract color signature
pig <- soilColorSignature(sp1)

Soil Color Palette

Description

A very simple function for generating labeled swatches of soil colors. Largely based on colorspace::swatchplot.

Usage

soilPalette(
  colors,
  lab = colors,
  lab.cex = 0.75,
  dynamic.labels = TRUE,
  x.inset = 0.01,
  y.inset = 0.01,
  ...
)

Arguments

colors

vector of hex colors (e.g. #A66E46FF)

lab

vector of labels

lab.cex

character scaling for labels

dynamic.labels

logical, adjust label colors for maximum contrast via invertLabelColor

x.inset

horizontal adjustment for labels

y.inset

vertical adjustment for labels

...

further arguments to colorspace::swatchplot

Note

The result is a simple figure on the active plotting device.

Author(s)

D.E. Beaudette

Examples

# maybe useful for teaching about soil color

par(mfrow=c(2,1), mar=c(1,1,1,1))

# demonstrate range of Munsell value
m <- sprintf('10YR %s/4', 2:8)
# convert to hex representation
cols <- parseMunsell(m)
# plot
soilPalette(cols, m)

# demonstrate range of Munsell chroma
m <- sprintf('10YR 4/%s', 2:8)
# convert to hex representation
cols <- parseMunsell(m)
# plot
soilPalette(cols, m)

An S4 object representation of a group of soil profiles.

Description

In general, one should use depths() to initiate a SoilProfileCollection object from data. However, sometimes there are instances where either an empty, or very specific, object is needed. If that is the case, the general constructor SoilProfileCollection is available.

Usage

SoilProfileCollection(
  idcol = "id",
  hzidcol = "hzID",
  depthcols = c("top", "bottom"),
  metadata = list(aqp_df_class = "data.frame", aqp_group_by = "", aqp_hzdesgn = "",
    aqp_hztexcl = "", stringsAsFactors = FALSE),
  horizons = data.frame(id = character(0), hzID = character(0), top = numeric(0), bottom
    = numeric(0), stringsAsFactors = FALSE),
  site = data.frame(id = character(0), stringsAsFactors = FALSE),
  diagnostic = data.frame(stringsAsFactors = FALSE),
  restrictions = data.frame(stringsAsFactors = FALSE)
)

Arguments

idcol

character. Profile ID Column Name

hzidcol

character. Horizon ID Column Name

depthcols

character. length 2 Top and Bottom Depth Column Names

metadata

list. metadata including data.frame class in use and depth units

horizons

data.frame. An object inheriting from data.frame containing Horizon data.

site

data.frame. An object inheriting from data.frame containing Site data.

diagnostic

data.frame. An object inheriting from data.frame containing diagnostic feature data. Must contain profile ID. See diagnostic_hz()

restrictions

data.frame. An object inheriting from data.frame containing restrictive feature data. Must contain profile ID. See restrictions()

Details

After aqp 2.0.2, the ⁠@sp⁠ slot was removed from the SoilProfileCollection object. If you run into errors related to old object definitions, use rebuildSPC() on the problematic object.

Slots

idcol

character.

hzidcol

character.

depthcols

character.

metadata

list.

horizons

data.frame.

site

data.frame.

diagnostic

data.frame.

restrictions

data.frame.

Author(s)

Pierre Roudier, Dylan E. Beaudette, Andrew G. Brown

Examples

## structure of default, empty SoilProfileCollection
str(SoilProfileCollection())


## use the depths() formula interface to specify
## profile ID, top and bottom depth and set up
## a SPC that is topologically correct and complete

d <- do.call('rbind', lapply(1:10, random_profile))

# promote to SoilProfileCollection and plot
depths(d) <- id ~ top + bottom
plot(d)

# split into new SoilProfileCollection objects by index
d.1 <- d[1, ]
d.2 <- d[2, ]
d.345 <- d[3:5, ]

# combine profile collections
# note that profiles are sorted according to ID
d.new <- c(d.345, d.1, d.2)
plot(d.new)

data(sp1)

## init SoilProfileCollection objects from data.frame
depths(sp1) <- id ~ top + bottom

## depth units
du <- depth_units(sp1)
depth_units(sp1) <- 'in'
depth_units(sp1) <- du

## horizon designation column
hzdesgnname(sp1) <- "name"
hzdesgnname(sp1)

## all designations in an SPC (useful for single profile SPC)
hzDesgn(sp1)

## horizon texture class column
hztexclname(sp1) <- "texture"
hztexclname(sp1)

## get/set metadata on SoilProfileCollection objects
# this is a 1-row data.frame
m <- metadata(sp1)
m$sampler <- 'Dylan'
metadata(sp1) <- m

## extract horizon data from SoilProfileCollection objects as data.frame
h <- horizons(sp1)

# also merge (left-join) of new columns and
# replacement of existing columns via horizons<-
horizons(sp1) <- h

# get number of horizons
nrow(sp1)


## getting site-level data
site(sp1)

## setting site-level data
# site-level data from horizon-level data (stored in @horizons)
site(sp1) <- ~ group


# make some fake site data, and append from data.frame
# a matching ID column must be present in both @site and new data
# note that IDs should all be character class
d <- data.frame(id=profile_id(sp1), p=runif(n=length(sp1)), stringsAsFactors=FALSE)
site(sp1) <- d

# edit horizon depths
horizonDepths(sp1) <- c('t', 'b')
horizonDepths(sp1)

# edit profile IDs
p <- sprintf("%s-new", profile_id(sp1))
profile_id(sp1) <- p
profile_id(sp1)

Lookup tables for sand, silt, clay, texture class, and textural modifiers.

Description

A list that contains a snapshot of the values generated using the logic from the particle size estimator calculation in NASIS, the average values per texture class, and average rock fragment values by textural modifier.

Usage

data(soiltexture)

Format

A list with 3 data frames. The first named values which contains values for sand, silt and clay by texture class. The second with average values for sand, silt and clay per texture class. The third has fragvoltot low, rv and high values for texmod.

list("clay")

clay percentage of the fine earth fraction, a integer vector

list("sand")

sand percentage of the fine earth fraction, a integer vector

list("silt")

silt percentage of the fine earth fraction, a integer vector

list("texcl")

texture class, a character vector

list("texmod")

textural modifiers, a character vector


Soil Texture Color Palettes

Description

Suggested color palettes for USDA soil texture classes, ranked according to average plant-available water holding capacity. The default color mapping schema is based on a palette used by SoilWeb applications.

Usage

soilTextureColorPal(simplify = FALSE, schema = "soilweb")

Arguments

simplify

logical, return the base 12 (TRUE) or full 21 (FALSE) soil texture classes

schema

select mapping between soil texture classes, and colors, currently limited to 'soilweb'

Value

data.frame from soil texture class codes and colors

Author(s)

D.E. Beaudette, Mike Walkinshaw, A.T. O'Geen

Examples

# base 12 soil texture classes
# ranked by plant available water-holding capacity
d <- soilTextureColorPal(simplify = TRUE)
soilPalette(d$color, lab = d$class, lab.cex = 1)

# full 21 soil texture classes
# ranked by plant available water-holding capacity
d <- soilTextureColorPal(simplify = FALSE)
soilPalette(d$color, lab = d$class, lab.cex = 1)

Ranking Systems for USDA Soil Texture Classes

Description

Generate a vector of USDA soil texture codes or class names, sorted according to approximate particle size

Usage

SoilTextureLevels(which = "codes", simplify = FALSE)

Arguments

which

'codes' (texture codes) or 'names' (texture class names)

simplify

Return 12-class factor levels (TRUE) or 21-class factor levels (default: FALSE)? The 12-class system does not separate sands, loamy sands and sandy loams into sand fraction variants (e.g. "very fine sandy loam" in the 21-class system is "sandy loam" in 12-class system)

Value

an ordered factor

References

Field Book for Describing and Sampling Soils, version 3.0

Examples

# class codes
SoilTextureLevels()

# class names
SoilTextureLevels(which = 'names')

# simpler class names
SoilTextureLevels(which = 'names', simplify = TRUE)

Soil Profile Data Example 1

Description

Soil profile data from Pinnacles National Monument, CA.

Format

A data frame with 60 observations on the following 21 variables.

group

a numeric vector

id

a character vector

top

a numeric vector

bottom

a numeric vector

bound_distinct

a character vector

bound_topography

a character vector

name

a character vector

texture

a character vector

prop

a numeric vector

structure_grade

a character vector

structure_size

a character vector

structure_type

a character vector

stickiness

a character vector

plasticity

a character vector

field_ph

a numeric vector

hue

a character vector

value

a numeric vector

chroma

a numeric vector

References

https://casoilresource.lawr.ucdavis.edu/

Examples

data(sp1)
# convert colors from Munsell to hex-encoded RGB
sp1$soil_color <- with(sp1, munsell2rgb(hue, value, chroma))

# promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group

# re-sample each profile into 1 cm (thick) depth slices
# for the variables 'prop', 'name', 'soil_color'
# result is a SoilProfileCollection object
s <- dice(sp1, 0:25 ~ prop + name + soil_color)

# plot, note slices
plot(s)


# aggregate all profiles along 1 cm depth slices,
# using data from column 'prop'
s1 <- slab(sp1, fm= ~ prop)

# check median & IQR
library(lattice)
xyplot(top ~ p.q50 + p.q25 + p.q75,
data=s1, type='S', horizontal=TRUE, col=1, lty=c(1,2,2),
panel=panel.superpose, ylim=c(110,-5), asp=2)

Honcut Creek Soil Profile Data

Description

A collection of 18 soil profiles, consisting of select soil morphologic attributes, associated with a stratigraphic study conducted near Honcut Creek, California.

Format

A data frame with 154 observations on the following 21 variables.

id

profile id

surface

dated surface

top

horizon top in cm

bottom

horizon bottom in cm

bound_distinct

horizon lower boundary distinctness class

bound_topography

horizon lower boundary topography class

name

horizon name

texture

USDA soil texture class

prop

field-estimated clay content

structure_grade

soil structure grade

structure_size

soil structure size

structure_type

soil structure type

stickiness

stickiness

plasticity

plasticity

field_ph

field-measured pH

hue

Munsell hue

value

Munsell value

chroma

Munsell chroma

r

RGB red component

g

RGB green component

b

RGB blue component

soil_color

R-friendly encoding of soil color

Author(s)

Dylan E. Beaudette

Source

Busacca, Alan J.; Singer, Michael J.; Verosub, Kenneth L. 1989. Late Cenozoic stratigraphy of the Feather and Yuba rivers area, California, with a section on soil development in mixed alluvium at Honcut Creek. USGS Bulletin 1590-G.

References

https://casoilresource.lawr.ucdavis.edu/

Examples

# keep examples from using more than 2 cores
data.table::setDTthreads(Sys.getenv("OMP_THREAD_LIMIT", unset = 2))

data(sp2)

# convert into SoilProfileCollection object
depths(sp2) <- id ~ top + bottom

# transfer site-level data
site(sp2) <- ~ surface

# generate a new plotting order, based on the dated surface each soil was described on
p.order <- order(sp2$surface)

# plot
par(mar=c(1,0,3,0))
plot(sp2, plot.order=p.order)

# setup multi-figure output
par(mfrow=c(2,1), mar=c(0,0,1,0))

# truncate plot to 200 cm depth
plot(sp2, plot.order=p.order, max.depth=200)
abline(h=200, lty=2, lwd=2)

# compute numerical distances between profiles
# based on select horizon-level properties, to a depth of 200 cm
d <- NCSP(sp2, vars=c('prop','field_ph','hue'), maxDepth = 100, k = 0)

# plot dendrogram with ape package:
if(require(ape) & require(cluster)) {
h <- diana(d)
p <- as.phylo(as.hclust(h))
plot(p, cex=0.75, label.offset=0.01, font=1, direct='down', srt=90, adj=0.5, y.lim=c(-0.125, 0.5))

# add in the dated surface type via color
tiplabels(col=as.numeric(sp2$surface), pch=15)

# based on distance matrix values, YMMV
legend('topleft', legend=levels(sp2$surface), col=1:6, pch=15, bty='n', bg='white', cex=0.75)
}

Soil Profile Data Example 3

Description

Soil samples from 10 soil profiles, taken from the Sierra Foothill Region of California.

Format

A data frame with 46 observations on the following 15 variables.

id

soil id

top

horizon upper boundary (cm)

bottom

horizon lower boundary (cm)

clay

clay content

cec

CEC by amonium acetate at pH 7

ph

pH in 1:1 water-soil mixture

tc

total carbon percent

hue

Munsell hue (dry)

value

Munsell value (dry)

chroma

Munsell chroma (dry)

mid

horizon midpoint (cm)

ln_tc

natural log of total carbon percent

L

color: l-coordinate, CIE-LAB colorspace (dry)

A

color: a-coordinate, CIE-LAB colorspace (dry)

B

color: b-coordinate, CIE-LAB colorspace (dry)

name

horizon name

soil_color

horizon color

Details

These data were collected to support research funded by the Kearney Foundation of Soil Science.

References

https://casoilresource.lawr.ucdavis.edu/

Examples

## this example investigates the concept of a "median profile"

# required packages
if (require(ape) & require(cluster)) {
  data(sp3)

  # generate a RGB version of soil colors
  # and convert to HSV for aggregation
  sp3$h <- NA
  sp3$s <- NA
  sp3$v <- NA
  sp3.rgb <- with(sp3, munsell2rgb(hue, value, chroma, return_triplets = TRUE))

  sp3[, c('h', 's', 'v')] <- t(with(sp3.rgb, rgb2hsv(r, g, b, maxColorValue = 1)))

  # promote to SoilProfileCollection
  depths(sp3) <- id ~ top + bottom

  # aggregate across entire collection
  a <- slab(sp3, fm = ~ clay + cec + ph + h + s + v, slab.structure = 10)

  # check
  str(a)

  # convert back to wide format
  library(data.table)

  a.wide.q25 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q25'))
  a.wide.q50 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q50'))
  a.wide.q75 <- dcast(as.data.table(a), top + bottom ~ variable, value.var = c('p.q75'))

  # add a new id for the 25th, 50th, and 75th percentile pedons
  a.wide.q25$id <- 'Q25'
  a.wide.q50$id <- 'Q50'
  a.wide.q75$id <- 'Q75'

  # combine original data with "mean profile"
  vars <- c('top', 'bottom', 'id', 'clay', 'cec', 'ph', 'h', 's', 'v')
  # make data.frame version of sp3
  sp3.df <- as(sp3, 'data.frame')

  sp3.grouped <- as.data.frame(rbind(as.data.table(horizons(sp3))[, .SD, .SDcol = vars], 
                                     a.wide.q25[, .SD, .SDcol = vars],
                                     a.wide.q50[, .SD, .SDcol = vars], 
                                     a.wide.q75[, .SD, .SDcol = vars]))
                                     
  # re-constitute the soil color from HSV triplets
  # convert HSV back to standard R colors
  sp3.grouped$soil_color <- with(sp3.grouped, hsv(h, s, v))

  # give each horizon a name
  sp3.grouped$name <- paste(
    round(sp3.grouped$clay),
    '/' ,
    round(sp3.grouped$cec),
    '/',
    round(sp3.grouped$ph, 1)
  )


# first promote to SoilProfileCollection
depths(sp3.grouped) <- id ~ top + bottom

plot(sp3.grouped)

## perform comparison, and convert to phylo class object
## D is rescaled to [0,]
d <- NCSP(
  sp3.grouped,
  vars = c('clay', 'cec', 'ph'),
  maxDepth = 100,
  k = 0.01
)

h <- agnes(d, method = 'ward')
p <- ladderize(as.phylo(as.hclust(h)))

# look at distance plot-- just the median profile
plot_distance_graph(d, 12)

# similarity relative to median profile (profile #12)
round(1 - (as.matrix(d)[12, ] / max(as.matrix(d)[12, ])), 2)

## make dendrogram + soil profiles

# setup plot: note that D has a scale of [0,1]
par(mar = c(1, 1, 1, 1))
p.plot <- plot(p,
               cex = 0.8,
               label.offset = 3,
               direction = 'up',
               y.lim = c(200, 0),
               x.lim = c(1.25, length(sp3.grouped) + 1),
               show.tip.label = FALSE)

# get the last plot geometry
lastPP <- get("last_plot.phylo", envir = .PlotPhyloEnv)

# the original labels, and new (indexed) order of pedons in dendrogram
d.labels <- attr(d, 'Labels')

new_order <- sapply(1:lastPP$Ntip,
                    function(i)
                      which(as.integer(lastPP$xx[1:lastPP$Ntip]) == i))

# plot the profiles, in the ordering defined by the dendrogram
# with a couple fudge factors to make them fit
plotSPC(
  sp3.grouped,
  color = "soil_color",
  plot.order = new_order,
  y.offset = max(lastPP$yy) + 10,
  width = 0.1,
  cex.names = 0.5,
  add = TRUE
)
}

Soil Chemical Data from Serpentinitic Soils of California

Description

Soil Chemical Data from Serpentinitic Soils of California

Format

A data frame with 30 observations on the following 13 variables.

id

site name

name

horizon designation

top

horizon top boundary in cm

bottom

horizon bottom boundary in cm

K

exchangeable K in c mol/kg

Mg

exchangeable Mg in cmol/kg

Ca

exchangeable Ca in cmol/kg

CEC_7

cation exchange capacity (NH4OAc at pH 7)

ex_Ca_to_Mg

extractable Ca:Mg ratio

sand

sand content by weight percentage

silt

silt content by weight percentage

clay

clay content by weight percentage

CF

>2mm fraction by volume percentage

Details

Selected soil physical and chemical data from (McGahan et al., 2009).

Source

https://www.soils.org/publications/sssaj/articles/73/6/2087

References

McGahan, D.G., Southard, R.J, Claassen, V.P. 2009. Plant-Available Calcium Varies Widely in Soils on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.

Examples

# load sample data set, a simple data.frame object with horizon-level data from 10 profiles
library(aqp)
data(sp4)
str(sp4)
sp4$idbak <- sp4$id

# upgrade to SoilProfileCollection
# 'id' is the name of the column containing the profile ID
# 'top' is the name of the column containing horizon upper boundaries
# 'bottom' is the name of the column containing horizon lower boundaries
depths(sp4) <- id ~ top + bottom

# check it out
class(sp4) # class name
str(sp4) # internal structure

# check integrity of site:horizon linkage
spc_in_sync(sp4)

# check horizon depth logic
checkHzDepthLogic(sp4)

# inspect object properties
idname(sp4) # self-explanitory
horizonDepths(sp4) # self-explanitory

# you can change these:
depth_units(sp4) # defaults to 'cm'
metadata(sp4) # not much to start with

# alter the depth unit metadata
depth_units(sp4) <- 'inches' # units are really 'cm'

# more generic interface for adjusting metadata

# add attributes to metadata list
metadata(sp4)$describer <- 'DGM'
metadata(sp4)$date <- as.Date('2009-01-01')
metadata(sp4)$citation <- 'McGahan, D.G., Southard, R.J, Claassen, V.P.
2009. Plant-Available Calcium Varies Widely in Soils
on Serpentinite Landscapes. Soil Sci. Soc. Am. J. 73: 2087-2095.'

depth_units(sp4) <- 'cm' # fix depth units, back to 'cm'

# further inspection with common function overloads
length(sp4) # number of profiles in the collection
nrow(sp4) # number of horizons in the collection
names(sp4) # column names
min(sp4) # shallowest profile depth in collection
max(sp4) # deepest profile depth in collection

# extraction of soil profile components
profile_id(sp4) # vector of profile IDs
horizons(sp4) # horizon data

# extraction of specific horizon attributes
sp4$clay # vector of clay content

# subsetting SoilProfileCollection objects
sp4[1, ] # first profile in the collection
sp4[, 1] # first horizon from each profile

# basic plot method, highly customizable: see manual page ?plotSPC
plot(sp4)
# inspect plotting area, very simple to overlay graphical elements
abline(v=1:length(sp4), lty=3, col='blue')
# profiles are centered at integers, from 1 to length(obj)
axis(1, line=-1.5, at=1:10, cex.axis=0.75, font=4, col='blue', lwd=2)
# y-axis is based on profile depths
axis(2, line=-1, at=pretty(1:max(sp4)), cex.axis=0.75, font=4, las=1, col='blue', lwd=2)


# symbolize soil properties via color
par(mar=c(0,0,4,0))
plot(sp4, color='clay')
plot(sp4, color='CF')

# apply a function to each profile, returning a single value per profile,
# in the same order as profile_id(sp4)
soil.depths <- profileApply(sp4, max) # recall that max() gives the depth of a soil profile

# check that the order is correct
all.equal(names(soil.depths), profile_id(sp4))

# a vector of values that is the same length as the number of profiles
# can be stored into site-level data
sp4$depth <- soil.depths
# check: looks good
max(sp4[1, ]) == sp4$depth[1]

# extract site-level data
site(sp4) # as a data.frame
sp4$depth # specific columns as a vector

# use site-level data to alter plotting order
new.order <- order(sp4$depth) # the result is an index of rank
par(mar=c(0,0,0,0))
plot(sp4, plot.order=new.order)

# deconstruct SoilProfileCollection into a data.frame, with horizon+site data
as(sp4, 'data.frame')

Sample Soil Database #5

Description

296 Soil Profiles from the La Rochelle region of France (F. Carre and Girard, 2002)

Format

SoilProfileCollection object

Details

These data are c/o F. Carre ([email protected]).

Source

296 Soil Profiles from the La Rochelle region of France (F. Carre and Girard, 2002). These data can be found on the OSACA project page (http://eusoils.jrc.ec.europa.eu/projects/OSACA/).

References

F. Carre, M.C. Girard. 2002. Quantitative mapping of soil types based on regression kriging of taxonomic distances with landform and land cover attributes. Geoderma. 110: 241–263.

Examples

## Not run: 
library(scales)
data(sp5)
par(mar=c(1,1,1,1))
# plot a random sampling of profiles
s <- sample(1:length(sp5), size=25)
plot(sp5[s, ], divide.hz=FALSE)

# plot the first 100 profiles, as 4 rows of 25, hard-coding the max depth
layout(matrix(c(1,2,3,4), ncol=1), height=c(0.25,0.25,0.25,0.25))
plot(sp5[1:25, ], max.depth=300)
plot(sp5[26:50, ], max.depth=300)
plot(sp5[51:75, ], max.depth=300)
plot(sp5[76:100, ], max.depth=300)


# 4x1 matrix of plotting areas
layout(matrix(c(1,2,3,4), ncol=1), height=c(0.25,0.25,0.25,0.25))

# plot profiles, with points added to the mid-points of randomly selected horizons
sub <- sp5[1:25, ]
plot(sub, max.depth=300) ; mtext('Set 1', 2, line=-0.5, font=2)
y.p <- profileApply(sub, function(x) {
  s <- sample(1:nrow(x), 1)
  h <- horizons(x); with(h[s,], (top+bottom)/2)
  })
points(1:25, y.p, bg='white', pch=21)

# plot profiles, with arrows pointing to profile bottoms
sub <- sp5[26:50, ]
plot(sub, max.depth=300); mtext('Set 2', 2, line=-0.5, font=2)
y.a <- profileApply(sub, function(x) max(x))
arrows(1:25, y.a-50, 1:25, y.a, len=0.1, col='white')

# plot profiles, with points connected by lines: ideally reflecting some kind of measured data
sub <- sp5[51:75, ]
plot(sub, max.depth=300); mtext('Set 3', 2, line=-0.5, font=2)
y.p <- 20*(sin(1:25) + 2*cos(1:25) + 5)
points(1:25, y.p, bg='white', pch=21)
lines(1:25, y.p, lty=2)

# plot profiles, with polygons connecting horizons with max clay content (+/-) 10 cm
sub <- sp5[76:100, ]
y.clay.max <- profileApply(sub, function(x) {
  i <- which.max(x$clay)
  h <- horizons(x)
  with(h[i, ], (top+bottom)/2)
  } )

plot(sub, max.depth=300); mtext('Set 4', 2, line=-0.5, font=2)
polygon(c(1:25, 25:1), c(y.clay.max-10, rev(y.clay.max+10)),
border='black', col=rgb(0,0,0.8, alpha=0.25))
points(1:25, y.clay.max, pch=21, bg='white')

# close plot
dev.off()


# plotting parameters
yo <- 100 # y-offset
sf <- 0.65 # scaling factor
# plot profile sketches
par(mar=c(0,0,0,0))
plot(sp5[1:25, ], max.depth=300, y.offset=yo, scaling.factor=sf)
# optionally add describe plotting area above profiles with lines
# abline(h=c(0,90,100, (300*sf)+yo), lty=2)
# simulate an environmental variable associated with profiles (elevation, etc.)
r <- vector(mode='numeric', length=25)
r[1] <- -50 ; for(i in 2:25) {r[i] <- r[i-1] + rnorm(mean=-1, sd=25, n=1)}
# rescale
r <- rescale(r, to=c(80, 0))
# illustrate gradient with points/lines/arrows
lines(1:25, r)
points(1:25, r, pch=16)
arrows(1:25, r, 1:25, 95, len=0.1)
# add scale for simulated gradient
axis(2, at=pretty(0:80), labels=rev(pretty(0:80)), line=-1, cex.axis=0.75, las=2)
# depict a secondary environmental gradient with polygons (water table depth, etc.)
polygon(c(1:25, 25:1), c((100-r)+150, rep((300*sf)+yo, times=25)),
border='black', col=rgb(0,0,0.8, alpha=0.25))


## End(Not run)

Soil Physical and Chemical Data from Manganiferous Soils

Description

Soil Physical and Chemical Data from Manganiferous Soils (Bourgault and Rabenhorst, 2011)

Format

A data frame with 30 observations on the following 13 variables.

id

pedon name

name

horizon designation

top

horizon top boundary in cm

bottom

horizon bottom boundary in cm

color

moist soil color in Munsell notation

texture

USDA soil texture class

sand

sand content by weight percentage

silt

silt content by weight percentage

clay

clay content by weight percentage

Fe

DCB-extracted Fe in g/kg (see citation)

Mn

DCB-extracted Mn in g/kg (see citation)

C

total organic carbon as g/kg

pH

measured in 1:1 H20 slurry

Db

bulk density (g/cc), clod method

Details

Selected soil physical and chemical data from (Bourgault and Rabenhorst, 2011).

Source

http://www.sciencedirect.com/science/article/pii/S0016706111001972

References

Rebecca R. Bourgault, Martin C. Rabenhorst. 2011. Genesis and characterization of manganiferous soils in the Eastern Piedmont, USA. Geoderma. 165:84-94.

Examples

# setup environment
  library(aqp)
  data(sp6)

  # init SPC
  depths(sp6) <- id ~ top + bottom
  # convert non-standard Munsell colors
  sp6$soil_color <- getClosestMunsellChip(sp6$color)

  # profile sketches
  par(mar=c(0,0,3,0))
  plot(sp6, color='soil_color')
  plot(sp6, color='Mn')
  plot(sp6, color='Fe')
  plot(sp6, color='pH')
  plot(sp6, color='texture')

Quickly assess relative state of site and horizon slots

Description

Determine "state" of SoilProfileCollection before or after major modifications of site or horizon slot contents.

Two logical checks are performed on the site and horizon tables, and a third element valid returns TRUE when both checks are TRUE.

Check 1: Same number of sites in site as number of sites in horizons. No intermingling of IDs, no orphan horizons, no sites without horizons (for now)

Check 2: Site IDs match coalesced profile ID from horizons. Ensures the same relative ordering, but horizons still may be out of order within profiles

Usage

spc_in_sync(object)

Arguments

object

A SoilProfileCollection

Value

data.frame

Author(s)

Andrew G. Brown

Examples

data(sp5)

spc_in_sync(sp5)

Example SoilProfileCollection with Overlapping Horizons

Description

A SoilProfileCollection with overlapping horizons, derived from a Dynamic Soil Properties project.

Usage

data(SPC.with.overlap)

Format

A SoilProfileCollection


SoilProfileCollection wrapper for mpspline2::mpspline()

Description

Generate mass-preserving splines for any numeric attribute in a SoilProfileCollection using mpspline2::mpspline(). mpspline2 implements the method described in Bishop et al. (1999). Currently this function only works with a single var_name at a time.

Usage

## S4 method for signature 'SoilProfileCollection'
spc2mpspline(
  object,
  var_name = NULL,
  method = c("est_1cm", "est_icm", "est_dcm"),
  pattern = "R|Cr|Cd|qm",
  hzdesgn = NULL,
  ...
)

Arguments

object

A SoilProfileCollection

var_name

Column name in ⁠@horizons⁠ slot of object containing numeric values to spline

method

Options include "est_1cm" (default; 1cm estimates), "est_icm" (estimates over original layer boundaries), "est_dcm" (estimates over constant interval, specified with d argument to mpspline3::mpspline()). Default value for d is c(0, 5, 15, 30, 60, 100, 200).

pattern

Regex pattern to match for bottom of profile (passed to minDepthOf()) default: "R|Cr|Cd|qm"; only used if hzdesgn is specified

hzdesgn

Column name in ⁠@horizons⁠ slot of object containing horizon designations default: NULL

...

Additional arguments to mpspline2::mpspline()

Details

This function now relies on the missing data checks provided by the mpspline2 package. See attr(..., 'removed') to see whole profiles that were removed from the set. Horizons containing NA in the property of interest are dropped with a message.

Data completeness is assessed and the input SoilProfileCollection is filtered and truncated to create a container for the results from mpspline2::mpspline().

Value

A SoilProfileCollection with 1cm slices. Spline variables are in columns prefixed with "spline_" and RMSE/RMSE_IQR are in columns prefixed with "rmse_". If any profiles were removed from the collection, their profile IDs are stored in attr(result, 'removed').

Author(s)

Andrew G. Brown

References

Bishop, T.F.A., McBratney, A.B., Laslett, G.M. (1999) Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 91(1–2), pp. 27-45. doi:10.1016/S0016-7061(99)00003-8

O'Brien, Lauren (2022). mpspline2: Mass-Preserving Spline Functions for Soil Data. R package version 0.1.6. https://cran.r-project.org/package=mpspline2

Examples

if (requireNamespace("mpspline2")) {
  data(sp1)
  depths(sp1) <- id ~ top + bottom

  res <- spc2mpspline(sp1, "prop")

  plotSPC(res[1:5,], color = "prop_spline", divide.hz = FALSE)
}

Convert reflectance spectra to closest Munsell chip

Description

Convert reflectance spectra to closest Munsell chip

Usage

spec2Munsell(
  x,
  res = 10,
  convert = TRUE,
  SO = c("CIE1931", "CIE1964"),
  illuminant = c("D65", "F2"),
  ...
)

Arguments

x

reflectance spectra, must range from 380nm to 730nm with resolution specified in res

res

spectra resolution in nm, typically 5nm or 10nm

convert

logical, convert sRGB coordinates to closest Munsell chip (see ?munsell)

SO

CIE standard observer: these are the color matching functions defined by CIE and used to represent "average" human color perception. CIE1931 is the 2 degree standard observer more useful for describing color perception over very small areas or at distance. CIE1964 is the 10 degree standard observer, used for most industrial color matching applications.

illuminant

CIE standard illuminants:

  • D65 represents average daylight

  • F2 represents typical fluorescent lighting

...

further arguments to col2Munsell()

Details

See the expanded tutorial for additional examples.

Value

output from col2Munsell()

References

Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and Technology (pp. 32-96). North-Holland.

CIE Colorimetry – Part 1: CIE standard colorimetric observers. CIES014-1/E:2006 – ISO 11664-1:2007(E)

CIE. (n.d.). CIE 15:2004 Tables Data. Retrieved from https://law.resource.org/pub/us/cfr/ibr/003/cie.15.2004.tables.xls

Examples

# Munsell reference spectra
data("munsell.spectra.wide")

# convert to closest Munsell chip
# sRGB -> Munsell conversion via col2Munsell()
spec2Munsell(munsell.spectra.wide[, '10YR 3/3'])

# attempt several
cols <- c('10YR 6/2', '5YR 5/6', '10B 4/4', '5G 4/4', '2.5Y 8/2', '10YR 3/3', '7.5YR 2.5/2')

# most are exact or very close
z <- do.call(
  'rbind',
  lapply(cols, function(i) {
    spec2Munsell(munsell.spectra.wide[, i])  
  })
)

# format Munsell notation from pieces
z$m <- sprintf("%s %s/%s", z$hue, z$value, z$chroma)

# compare
colorContrastPlot(
  m1 = cols, 
  m2 = z$m, 
  labels = c('original', 'spectral\ninterpretation')
)

## Not run: 
if(requireNamespace("gower")) {
# mix colors, return spectra, convert to color
cols <- c('10YR 6/2', '5YR 5/6', '10B 4/4')
res <- mixMunsell(cols, keepMixedSpec = TRUE, mixingMethod = 'reference')

# note that they are slightly different
res$mixed
spec2Munsell(res$spec)

}

## End(Not run)

Standard Illuminants and Observers

Description

D65 and F2 standard illuminant spectral power distributions, CIE1931 Standard Observer (2 degree), and CIE1964 Supplemental Standard Observer (10 degree)

Usage

data(spectral.reference)

Format

An object of class data.frame with 71 rows and 9 columns.

References

Marcus, R.T. (1998). The Measurement of Color. In K. Nassau (Ed.), Color for Science, Art, and Technology (pp. 32-96). North-Holland.

CIE Colorimetry – Part 1: CIE standard colorimetric observers. CIES014-1/E:2006 – ISO 11664-1:2007(E)

CIE. (n.d.). CIE 15:2004 Tables Data. Retrieved from https://law.resource.org/pub/us/cfr/ibr/003/cie.15.2004.tables.xls

Examples

data("spectral.reference")

matplot(
  x = spectral.reference[, 1],
  y = spectral.reference[, c('xbar_2', 'ybar_2', 'zbar_2')],
  ylim = c(0, 2),
  type = 'l',
  lwd = 2, 
  lty = 1,
  las = 1,
  xlab = 'Wavelength (nm)',
  ylab = 'Weight | Intensity',
  main = "CIE1931 (2\u00B0) and CIE1964 (10\u00B0) Standard Observers
  D65 and F2 Illuminant Power Spectrum (rescaled / offset for clarity)",
  cex.main = 0.9
)

matlines(
  x = spectral.reference[, 1],
  y = spectral.reference[, c('xbar_10', 'ybar_10', 'zbar_10')],
  type = 'l',
  lwd = 2, 
  lty = 2,
  las = 1,
  xlab = 'Wavelength (nm)',
  ylab = 'Weight | Intensity',
  main = 'CIE1931 Standard Observer Weights\nD65 Standard Illuminant'
)

lines(
  x = spectral.reference$w,
  y = (spectral.reference$D65 / 100) + 0.33,
  lty = 1,
  col = 'royalblue'
)

lines(
  x = spectral.reference$w,
  y = (spectral.reference$F2 / 25) + 0.4,
  lty = 1,
  col = 'violet'
)

legend(
  'topright',
  legend = c('X_2', 'Y_2', 'Z_2', 'X_10', 'Y_10', 'Z_10', 'D65', 'F2'),
  col = c(1, 2, 3, 1, 2, 3, 'royalblue', 'violet'),
  lwd = c(2, 2, 2, 2, 2, 2, 1, 1),
  lty = c(1, 1, 1, 2, 2, 2, 1, 1),
  bty = 'n',
  cex = 0.85
)

Split a SoilProfileCollection object into a list of SoilProfileCollection objects.

Description

This function splits a SoilProfileCollection into a list of SoilProfileCollection objects using a site-level attribute to define groups or profile ID (idname(x)).

Usage

## S4 method for signature 'SoilProfileCollection'
split(x, f, drop = TRUE, ...)

Arguments

x

SoilProfileCollection object

f

character vector naming a single site-level attribute that defines groups, a ‘factor’ in the sense that as.factor(f) defines the grouping, or a list of such factors in which case their interaction is used for the grouping.

drop

logical indicating if levels that do not occur should be dropped (if f is a factor or a list). When drop=FALSE and f contains missing values an additional group "missing" is returned.

...

additional arguments are ignored

Details

As of aqp 1.25, omission of f argument is no longer possible, as the base R generic is overloaded by this SoilProfileCollection method. This used to result in an "identity" split, according to idname(x), e.g. a list as long as length(x), with a single-profile SoilProfileCollection per list element. Replicate this behavior using f = idname(x) or f = profile_id(x).

Value

A list of SoilProfileCollection or NULL for empty result.

Author(s)

D.E. Beaudette and A.G. Brown

Examples

data(sp2)
depths(sp2) <- id ~ top + bottom

# add a more interesting site-level attribute
site(sp2) <- ~ surface

# using identity site-level attribute (profile ID)
p1 <- split(sp2, f = idname(sp2))
names(p1)
length(p1)

# using vector equal in length to number of profiles (profile ID, again)
p2 <- split(sp2, f = profile_id(sp2))
names(p2)
length(p2)

# which are both equivalent to setting `f` to NULL
p3 <- split(sp2, f = NULL)
names(p3)
length(p3)

# split on surface (age) site-level var
p4 <- split(sp2, f = "surface")
names(p4)
length(p4) # 5 unique "surfaces", 5 SPCs in result list

Split a SoilProfileCollection into a list based on types of horizon logic errors

Description

Uses checkHzDepthLogic() to identify presence of depth logic errors, same depths, missing depths, and overlaps/gaps between the horizons of each profile in a SoilProfileCollection.

Usage

splitLogicErrors(object, interact = FALSE, ...)

Arguments

object

A SoilProfileCollection

interact

Calculate interaction between the four logic errors for groups? Default: FALSE always returns 4 groups, one for each logic error type.

...

Additional arguments to split.default, called when interact = TRUE

Value

A named list of SoilProfileCollections (or NULL), with names: "depthLogic", "sameDepth", "missingDepth", "overlapOrGap". If interact = TRUE then the list elements groups determined by interaction() of the error types.

Examples

data(sp4)
depths(sp4) <- id ~ top + bottom

# no errors (all four list elements return NULL)
splitLogicErrors(sp4)

# NA in top depth triggers depth logic and missing depth errors
data(sp4)
sp4$top[1] <- NA
depths(sp4) <- id ~ top + bottom

splitLogicErrors(sp4)

# interact = TRUE gets errors for profile 1 in same group
#  and allows you to pass extra arguments to split.default()
splitLogicErrors(sp4, interact = TRUE, sep = "_", drop = TRUE)

Subset SPC based on result of performing function on each profile

Description

subApply() is a function used for subsetting SoilProfileCollections. It currently does NOT support for "tidy" lexical features in the ... arguments passed to profileApply(). The expectation is that the function .fun takes a single-profile SoilProfileCollection and returns a logical value of length one. The use case would be for any logical comparisons that cannot be evaluated inline by subSPC() because they require more than simple logical operations.

Usage

subApply(object, .fun, ...)

Arguments

object

A SoilProfileCollection

.fun

A function that takes a single profile, returns logical of length 1.

...

Additional arguments are passed to .fun

Value

A SoilProfileCollection.

Author(s)

Andrew G. Brown.


Subset a SoilProfileCollection with logical expressions

Description

subset() is a function used for extracting profiles from a SoilProfileCollection based on logical criteria. It allows the user to specify an arbitrary number of logical vectors (equal in length to site or horizon), separated by commas. The function includes some support for non-standard evaluation.

Usage

## S4 method for signature 'SoilProfileCollection'
subset(x, ..., greedy = FALSE)

Arguments

x

A SoilProfileCollection

...

Comma-separated set of R expressions that evaluate as TRUE or FALSE. Length for individual expressions matches number of sites OR number of horizons, in object.

greedy

Use "greedy" matching for combination of site and horizon level matches? greedy = TRUE is the union, whereas greedy = FALSE (default) is the intersection (of site and horizon matches).

Details

To minimize likelihood of issues with non-standard evaluation context, especially when using subset() inside another function, all expressions used in ... should be in terms of variables that are in the site or horizon data frame.

Value

A SoilProfileCollection.

Author(s)

Andrew G. Brown.


Subset the horizons in a SoilProfileCollection using logical criteria

Description

subsetHz() is a function used for extracting horizons from a SoilProfileCollection based on logical criteria.

Usage

## S4 method for signature 'SoilProfileCollection'
subsetHz(x, ..., drop = TRUE)

Arguments

x

a SoilProfileCollection

...

Comma-separated set of R expressions that evaluate as TRUE or FALSE in context of horizon data frame. Length for individual expressions matches number of horizons, in x.

drop

Default: TRUE. When drop=FALSE placeholder horizons (profile ID with all other values NA) are created where the specified filter results in removal of all horizons.

Details

To minimize likelihood of issues with non-standard evaluation context, especially when using subsetHz() inside another function, all expressions used in ... should be in terms of variables that are in the horizon data frame.

Value

a SoilProfileCollection with a subset of horizons, possibly with some sites removed

Examples

data(sp3)

depths(sp3) <- id ~ top + bottom

# show just horizons with 10YR hues
plot(subsetHz(sp3, hue == '10YR'))

DEPRECATED use subset

Description

This function is used to subset SoilProfileCollection objects using either site-level or horizon-level attributes, or both.

Usage

## S4 method for signature 'SoilProfileCollection'
subsetProfiles(object, s, h, ...)

Arguments

object

object

s

fully-quoted search criteria for matching via site-level attributes

h

fully-quoted search criteria for matching via horizon-level attributes

...

not used

Details

The s argument supplies a fully-quoted search criteria for matching via site or horizon-level attributes. The h argument supplies a fully-quoted search criteria for matching via horizon-level attributes. All horizons associated with a single horizon-level match (i.e. out of several, only a single horizon matches the search criteria) are returned. See examples for usage.

Value

A SoilProfileCollection class object.

Examples

# more interesting sample data
data(sp2)
depths(sp2) <- id ~ top + bottom
site(sp2) <- ~ surface

# subset by integer index, note that this does not re-order the profiles
plot(sp2[1:5, ])

# generate an integer index via pattern-matching
idx <- grep('modesto', sp2$surface, ignore.case=TRUE)
plot(sp2[idx, ])

# generate in index via profileApply:
# subset those profiles where: min(ph) < 5.6
idx <- which(profileApply(sp2, function(i) min(i$field_ph, na.rm=TRUE) < 5.6))
plot(sp2[idx, ])

Perform summaries on groups (from group_by) and create new site or horizon level attributes

Description

summarize() is a function used for summarizing a SoilProfileCollection object. Specify the groups using the group_by verb, and then (named) expressions to evaluate on each group. The result is a data.frame with one row per categorical level in the grouping variable and one column for each summary variable.

Usage

summarizeSPC(object, ...)

Arguments

object

A SoilProfileCollection

...

A set of (named) comma-delimited R expressions that resolve to a summary value. e.g groupmean = mean(clay, na.rm = TRUE)

Value

A data.frame with one row per level in the grouping variable, and one column for each summary

Author(s)

Andrew G. Brown


Compute weighted naive and tau statistics for a cross-classification matrix

Description

tauW: Computes: (1) unweighted naive, (2) weighted naive, (3) unweighted tau, (4) weighted tau accuracy statistics

Usage

tauW(
  CM,
  W = diag(sqrt(length(as.matrix(CM)))),
  P = rep(1/nrow(as.matrix(CM)), nrow(as.matrix(CM)))
)

summaryTauW(result.tau)

Arguments

CM

a square confusion (cross-classification) matrix (rows: allocation, columns: reference)

W

weights: 1 on diagonals, [-1..1] off giving partial credit to this error

P

prior probability vector, length = number of rows/columns in CM and W

result.tau

tauW() result

Details

summaryTauW: prints a summary of the results from tauW

xtableTauW: formats a LaTeX table with results from tauW and saves it as a .tex file for import into a LaTeX document.

Input matrices CM and W may be in data.frame format and will be converted

Weights matrix W: 0 = no credit; 1 = full credit; -1 = maximum penalty

If absent, default is no partial credit, i.e., unweighted.

Prior probabilities vector P: If absent, P are equal priors for each class. Special value P = 0 is interpreted as P = column marginals.

Error checks: CM must be square; P must have correct number of classes and sum to 1 +/- 0.0001; W & CM must be conformable

Value

Results are returned in a list with obvious R names

Author(s)

D.G. Rossiter

References

  • Rossiter, D. G., Zeng, R., & Zhang, G.-L. (2017). Accounting for taxonomic distance in accuracy assessment of soil class predictions. Geoderma, 292, 118–127. doi:10.1016/j.geoderma.2017.01.012

  • Ma, Z. K., & Redmond, R. L. (1995). Tau-coefficients for accuracy assessment of classification of remote-sensing data. Photogrammetric Engineering and Remote Sensing, 61(4), 435–439.

  • Naesset, E. (1996). Conditional tau coefficient for assessment of producer’s accuracy of classified remotely sensed data. ISPRS Journal of Photogrammetry and Remote Sensing, 51(2), 91–98. doi:10.1016/0924-2716(69)00007-4

Examples

# example confusion matrix
# rows: allocation (user's counts)
# columns: reference (producer's counts)
crossclass <- matrix(data=c(2,1,0,5,0,0,
                            1,74,2,1,3,6,
                            0,5,8,6,1,3,
                            6,1,3,91,0,0,
                            0,4,0,0,0,4,
                            0,6,2,2,4,38),
                     nrow=6, byrow=TRUE)
row.names(crossclass) <- c("OP", "SA", "UA", "UC", "AV", "AC")
colnames(crossclass) <- row.names(crossclass)

# build the weights matrix
# how much credit for a mis-allocation
weights <- matrix(data=c(1.00,0.05,0.05,0.15,0.05,0.15,
                         0.05,1.00,0.05,0.05,0.05,0.35,
                         0.05,0.05,1.00,0.20,0.15,0.15,
                         0.15,0.05,0.25,1.00,0.10,0.25,
                         0.05,0.10,0.15,0.10,1.00,0.15,
                         0.20,0.30,0.10,0.25,0.20,1.00),
                  nrow=6, byrow=TRUE)

# unweighted accuracy
summaryTauW(nnaive <- tauW(crossclass))

# unweighted tau with equal priors, equivalent to Foody (1992) modified Kappa
tauW(crossclass)$tau

# unweighted tau with user's = producer's marginals, equivalent to original kappa
(priors <-  apply(crossclass, 2, sum)/sum(crossclass))
tauW(crossclass, P=priors)$tau

# weighted accuracy; tau with equal priors
summaryTauW(weighted <- tauW(crossclass, W=weights))

# weighted accuracy; tau with user's = producer's marginals
summaryTauW(tauW(crossclass, W=weights, P=priors))

# change in accuracy statistics weighted vs. non-weighted
(weighted$overall.weighted - weighted$overall.naive)
(weighted$user.weighted - weighted$user.naive)
(weighted$prod.weighted - weighted$prod.naive)

Textural conversions

Description

These functions consist of several conversions between sand, silt and clay to texture class and visa versa, textural modifiers to rock fragments, and grain size composition to the family particle size class.

Usage

texcl_to_ssc(texcl = NULL, clay = NULL, sample = FALSE)

ssc_to_texcl(
  sand = NULL,
  clay = NULL,
  simplify = FALSE,
  as.is = FALSE,
  droplevels = TRUE
)

texmod_to_fragvoltot(texmod = NULL, lieutex = NULL)

texture_to_taxpartsize(
  texcl = NULL,
  clay = NULL,
  sand = NULL,
  sandvf = NULL,
  fragvoltot = NULL
)

texture_to_texmod(texture, duplicates = "combine")

fragvol_to_texmod(
  object = NULL,
  gravel = NULL,
  cobbles = NULL,
  stones = NULL,
  boulders = NULL,
  channers = NULL,
  flagstones = NULL,
  paragravel = NULL,
  paracobbles = NULL,
  parastones = NULL,
  paraboulders = NULL,
  parachanners = NULL,
  paraflagstones = NULL,
  as.is = TRUE,
  droplevels = TRUE
)

Arguments

texcl

vector of texture classes than conform to the USDA code conventions (e.g. c|C, sil|SIL, sl|SL, cos|COS)

clay

vector of clay percentages

sample

logical: should ssc be random sampled from the lookup table? (default: FALSE)

sand

vector of sand percentages

simplify

Passed to SoilTextureLevels() to set the number of possible texture classes. If TRUE, the ordered factor has a maximum of 12 levels, if FALSE (default) the ordered factor has a maximum of 21 levels (including e.g. very fine/fine/coarse variants)

as.is

logical: should character vectors be converted to factors? (default: TRUE)

droplevels

logical: indicating whether to drop unused levels in factors. This is useful when the results have a large number of unused classes, which can waste space in tables and figures.

texmod

vector of textural modifiers that conform to the USDA code conventions (e.g. gr|GR, grv|GRV)

lieutex

vector of in lieu of texture terms that conform to the USDA code conventions (e.g. gr|GR, pg|PG), only used when fragments or artifacts are > 90 percent by volume (default: NULL))

sandvf

vector of very fine sand percentages

fragvoltot

vector of total rock fragment percentages

texture

vector of combinations of texcl, texmod, and lieutex (e.g. CL, GR-CL, CBV-S, GR)

duplicates

character: specifying how multiple values should be handled, options are "combined" (e.g. 'GR & GRV) or "max"(e.g. 'GRV')

object

data.frame: containing the following column names: gravel, cobbles, stones, boulders, channers, flagstones, paragravel, paracobbles, parastones, paraboulders, parachanners, paraflagstones

gravel

numeric: gravel volume %

cobbles

numeric: cobble volume %

stones

numeric: stone volume %

boulders

numeric: boulder volume %

channers

numeric: channer volume %

flagstones

numeric: flagstone volume %

paragravel

numeric: para gravel volume %

paracobbles

numeric: para cobble volume %

parastones

numeric: para stone volume %

paraboulders

numeric: para boulder volume %

parachanners

numeric: para channer volume %

paraflagstones

numeric: para flagstone volume %

Details

These functions are intended to estimate missing values or allocate particle size fractions to classes. The ssc_to_texcl() function uses the same logic as the particle size estimator calculation in NASIS to classify sand and clay into texture class. The results are stored in soiltexture and used by texcl_to_ssc() as a lookup table to convert texture class to sand, silt and clay. The function texcl_to_ssc() replicates the functionality described by Levi (2017). The texmod_to_fragvol() function similarly uses the logical from the Exhibit618-11_texture_modifier.xls spreadsheet to determine the textural modifier from the various combinations of rock and pararock fragments (e.g. GR and PGR).

When sample = TRUE, the results can be used to estimate within-class, marginal distributions of sand, silt, and clay fractions. It is recommended that at least 10 samples be drawn for reasonable estimates.

The function texmod_to_fragvoltot returns a data.frame with multiple fragvoltot columns differentiated by tailing abbreviations (e.g. _r) which refer to the following:

  1. l = low

  2. r = representative

  3. h = high

  4. nopf = no pararock fragments (i.e. total fragments - pararock fragments)

The function texture_to_texmod() parses texture (e.g. GR-CL) to extract the texmod values from it in the scenario where it is missing from texmod column. If multiple texmod values are present (for example in the case of stratified textures) and duplicates = "combine" they will be combined in the output (e.g. GR & CBV). Otherwise if duplicates = "max" the texmod with the highest rock fragment (e.g. CBV) will be returned.

Unlike the other functions, texture_to_taxpartsize() is intended to be computed on weighted averages within the family particle size control section. Also recall from the criteria that carbonate clay should be subtracted from clay content and added to silt content. Similarly, if the percent of very fine sand is known it should be subtracted from the sand, and added to the silt content. Unlike the other functions, texture_to_taxpartsize() is intended to be computed on weighted averages within the family particle size control section. Also recall from the criteria that carbonate clay should be subtracted from clay content and added to silt content. Similarly, if the percent of very fine sand is known it should be subtracted from the sand, and added to the silt content.

Value

  • texcl_to_ssc: A data.frame containing columns "sand","silt", "clay"

  • ssc_to_texcl: A character vector containing texture class

  • texmod_to_fragvoltot: A data.frame containing columns "fragvoltot_l", "fragvoltot_r", "fragvoltot_h", "fragvoltot_l_nopf", "fragvoltot_r_nopf", "fragvoltot_h_nopf"

  • texture_to_taxpartsize: a character vector containing "taxpartsize" classes

  • texture_to_texmod: a character vector containing "texmod" classes

  • texmod_to_fragvol: a data.frame containing "texmod" and "lieutex" classes

Author(s)

Stephen Roecker

References

Matthew R. Levi, Modified Centroid for Estimating Sand, Silt, and Clay from Soil Texture Class, Soil Science Society of America Journal, 2017, 81(3):578-588, ISSN 1435-0661, doi:10.2136/sssaj2016.09.0301.

See Also

SoilTextureLevels

hz_to_taxpartsize(), lookup_taxpartsize()

Examples

# example of ssc_to_texcl()
tex <- expand.grid(sand = 0:100, clay = 0:100)
tex <- subset(tex, (sand + clay) < 101)
tex$texcl <- ssc_to_texcl(sand = tex$sand, clay = tex$clay)
head(tex)

# example of texcl_to_ssc(texcl)
texcl <- c("cos", "s", "fs", "vfs", "lcos", "ls",
          "lfs", "lvfs", "cosl", "sl", "fsl", "vfsl", "l",
          "sil", "si", "scl", "cl", "sicl", "sc", "sic", "c"
          )
test <- texcl_to_ssc(texcl)
head(test <- cbind(texcl, test), 10)


# example of texcl_to_ssc(texcl, clay)
data(soiltexture)
st <- soiltexture$values
idx <- sample(1:length(st$texcl), 10)
st <- st[idx, ]
ssc <- texcl_to_ssc(texcl = st$texcl)
head(cbind(texcl = st$texcl, clay = ssc$clay))


# example of texmod_to_fragvoltol
frags <- c("gr", "grv", "grx", "pgr", "pgrv", "pgrx")
head(texmod_to_fragvoltot(frags))


# example of texture_to_taxpartsize()
tex <- data.frame(texcl = c("c", "cl", "l", "ls", "s"),
                  clay  = c(55, 33, 18, 6, 3),
                  sand  = c(20, 33, 42, 82, 93),
                  fragvoltot = c(35, 15, 34, 60, 91))
tex$fpsc <- texture_to_taxpartsize(texcl = tex$texcl,
                                   clay = tex$clay,
                                   sand = tex$sand,
                                   fragvoltot = tex$fragvoltot)
head(tex)


# example of texture_to_taxpartsize() with carbonate clay and very fine sand
carbclay <- rnorm(5, 2, 3)
vfs <- rnorm(5, 10, 3)
st$fpsc <- texture_to_taxpartsize(texcl = tex$texcl,
                                  clay = tex$clay - carbclay,
                                  sand = tex$sand - vfs,
                                  fragvoltot = tex$fragvoltot)
head(tex)


# example of sample = TRUE
texcl <- rep(c("cl", "sil", "sl"), 10)
ssc1 <- cbind(texcl, texcl_to_ssc(texcl = texcl, sample = FALSE))
ssc2 <- cbind(texcl, texcl_to_ssc(texcl = texcl, sample = TRUE))
ssc1$sample <- FALSE
ssc2$sample <- TRUE
ssc  <- rbind(ssc1, ssc2)
aggregate(clay ~ sample + texcl, data = ssc, summary)


# example of texture_to_texmod()
tex <- c("SL", "GR-SL", "CBV-L", "SR- GR-FS GRX-COS")
texture_to_texmod(tex)
texture_to_texmod(tex, duplicates = "max")


# example of fragvol_to_texmod()
df <- expand.grid(
  gravel  = seq(0, 100, 5), 
  cobbles = seq(0, 100, 5), 
  stones  = seq(0, 100, 5), 
  boulders = seq(0, 100, 5)
  )
df <- df[rowSums(df) < 100, ]

# data.frame input
test <- fragvol_to_texmod(df)
table(test$texmod)
table(test$lieutex)

# vector inputs
fragvol_to_texmod(gravel = 10, cobbles = 10)

Soil Texture Low-RV-High as Defined by Quantiles

Description

This function accepts soil texture components (sand, silt, and clay percentages) and plots a soil texture triangle with a "representative value" (point) and low-high region (polygon) defined by quantiles (estimated with Hmisc::hdquantile). Marginal quantiles of sand, silt, and clay are used to define the boundary of a low-high region. The default settings place the RV symbol at the texture defined by marginal medians of sand, silt, and clay. The default low-high region is defined by the 5th and 95th marginal percentiles of sand, silt, and clay.

Usage

textureTriangleSummary(
  ssc,
  p = c(0.05, 0.5, 0.95),
  delta = 1,
  rv.col = "red",
  range.border = "black",
  range.col = "RoyalBlue",
  range.alpha = 80,
  range.lty = 1,
  range.lwd = 2,
  main = "Soil Textures",
  legend.cex = 0.75,
  legend = TRUE,
  ...
)

Arguments

ssc

data.frame with columns: 'SAND', 'SILT', 'CLAY', values are percentages that should add to 100. No NA allowed.

p

vector of percentiles (length = 3) defining 'low', 'representative value', and 'high'

delta

grid size used to form low-high region

rv.col

color used for representative value (RV) symbol

range.border

color used for polygon border enclosing the low-high region

range.col

color used for polygon enclosing the low-high region

range.alpha

transparency of the low-high range polygon (0-255)

range.lty

line style for polygon enclosing the low-high region

range.lwd

line weight polygon enclosing the low-high region

main

plot title

legend.cex

scaling factor for legend

legend

logical, enable/disable automatic legend

...

further arguments passed to soiltexture::TT.points

Value

an invisible matrix with marginal percentiles of sand, silt, and clay

Author(s)

D.E. Beaudette, J. Nemecek, K. Godsey

See Also

bootstrapSoilTexture

Examples

if(
requireNamespace("Hmisc") &
  requireNamespace("compositions") &
  requireNamespace("soiltexture")
) {
  
  # sample data
  data('sp4')
  
  # subset rows / columns
  ssc <- sp4[grep('^Bt', sp4$name), c('sand', 'silt', 'clay')]
  names(ssc) <- toupper(names(ssc))
  
  # make figure, marginal percentiles are silently returned
  stats <- textureTriangleSummary(
    ssc, pch = 1, cex = 0.5, 
    range.alpha = 50, 
    range.lwd = 1,
    col = grey(0.5), 
    legend = FALSE
  )
  
  # check
  stats
  
  # simulate some data and try again
  s <- bootstrapSoilTexture(ssc, n = 100)$samples
  
  # make the figure, ignore results
  textureTriangleSummary(
    s, pch = 1, cex = 0.5, 
    range.alpha = 50, 
    range.lwd = 1,
    col = grey(0.5), 
    legend = FALSE
  )
}

Calculate Thickness of Horizons Matching Logical Criteria

Description

This function calculates the cumulative (method="cumulative", default) or maximum difference between (method="minmax") horizons within a profile that match a defined pattern (pattern) or, more generally, any set of horizon-level logical expressions encoded in a function (FUN).

Usage

thicknessOf(
  x,
  pattern = NULL,
  hzdesgn = hzdesgnname(x, required = TRUE),
  method = "cumulative",
  prefix = "",
  thickvar = "thickness",
  depthvars = horizonDepths(x),
  FUN = function(x, pattern, hzdesgn, ...) grepl(pattern, x[[hzdesgn]]),
  na.rm = FALSE,
  ...
)

Arguments

x

A SoilProfileCollection

pattern

character. A pattern to match in hzdesgn; used with the default FUN definition for regular expression pattern matching on horizons.

hzdesgn

character. A column containing horizon designations or other horizon-level character label used to identify matches; used with the default FUN definition.

method

character. Either "cumulative" (default) or "minmax". See details.

prefix

character. Column prefix for calculated thickvar (and depthvar for method="minmax") column results. Default: "".

thickvar

character Length 1. Column name to use for calculated thickness column. Default: "thickness"

depthvars

character. Length 2. Column names to use for calculated minimum top depth and maximum bottom depth in method="minmax". Default: horizonDepths(x)

FUN

function. A function that returns a logical vector equal in length to the number of horizons in x. See details.

na.rm

logical. Omit NA values in summaries of thickness and in matching? Default: FALSE

...

Additional arguments passed to the matching function FUN.

Details

The two thickness methods currently available are:

  • method="cumulative" (default): cumulative thickness of horizons where FUN returns true

  • method="minmax": maximum bottom depth minus minimum top depth of horizons where FUN returns true

If a custom function (FUN) is used, it should accept arbitrary additional arguments via an ellipsis (...). It is not necessary to do anything with arguments, but the result should match the number of horizons found in the input SoilProfileCollection x.

Value

A data.frame-like object (corresponding to the aqp_df_class() of x) with one row per profile in x. First column is always the profile ID which is followed by "thickness". In method="minmax" the upper and lower boundaries used to calculate "thickness" are also returned as "tmin" and "tmax" columns, respectively.

Examples

data("jacobs2000")

# cumulative thickness of horizon designations matching "Bt"
thicknessOf(jacobs2000, "Bt")

# maximum bottom depth minus minimum top depth of horizon designations matching "Bt"
thicknessOf(jacobs2000, "Bt", prefix = "Bt_", method = "minmax")

# cumulative thickness of horizon designations matching "A|B"
thicknessOf(jacobs2000, "A|B", prefix = "AorB_")

# maximum bottom depth minus minimum top depth of horizon designations matching "A|B"
thicknessOf(jacobs2000, "A|B", method = "minmax", prefix = "AorB_")
# note that the latter includes the thickness of E horizons between the A and the B

# when using a custom function (be sure to accept ... and consider the effect of NA values)

# calculate cumulative thickness of horizons containing >18% clay
thicknessOf(jacobs2000, prefix = "claygt18_", 
            FUN = function(x, ...) !is.na(x[["clay"]]) & x[["clay"]] > 18)

Thompson-Bell (1996) Index

Description

Calculate the "Profile Darkness Index" by the method of Thompson & Bell (1996) "Color index for identifying hydric conditions for seasonally saturated mollisols in Minnesota" DOI: 10.2136/sssaj1996.03615995006000060051x. The Thompson-Bell Index has been shown to reflect catenary relationships in some Mollisols of Minnesota (generally: wetter landscape positions = thicker, darker surfaces).

Usage

thompson.bell.darkness(
  p,
  name = hzdesgnname(p, required = TRUE),
  pattern = "^A",
  value = "m_value",
  chroma = "m_chroma"
)

Arguments

p

A single-profile SoilProfileCollection (e.g. via profileApply())

name

Column name containing horizon designations used to find A horizons (default: first column name containing 'name')

pattern

Regular expression to match A horizons (default: "^A" which means horizon designation starts with A)

value

Column name containing horizon color values (default: "m_value")

chroma

Column name containing horizon color chromas (default: "m_chroma")

Value

A numeric vector reflecting horizon darkness (lower values = darker).

Author(s)

Andrew G. Brown

References

Thompson, J.A. and Bell, J.C. (1996), Color Index for Identifying Hydric Conditions for Seasonally Saturated Mollisols in Minnesota. Soil Science Society of America Journal, 60: 1979-1988. doi:10.2136/sssaj1996.03615995006000060051x


Traditional Soil Color Names

Description

Traditional soil color names associated with select Munsell colors.

Usage

data(traditionalColorNames)

Format

An object of class data.frame with 482 rows and 2 columns.

References

Sourced from the "colorconverter" NASIS property script.


Transform a SPC with expressions based on site or horizon level attributes

Description

transform() is a function used for modifying columns in SoilProfileCollections.

It allows the user to specify an arbitrary number of expressions that resolve to the (re-)calculation of one or more site or horizon level attributes. For instance: mutate(spc, thickness = hzdepb - hzdept). The expressions may depend on one another, and are evaluated from left to right.

Usage

## S4 method for signature 'SoilProfileCollection'
transform(`_data`, ...)

Arguments

_data

A SoilProfileCollection

...

Comma-separated set of R expressions e.g. thickness = hzdepb - hzdept, hzdepm = hzdept + round(thk / 2)

Value

A SoilProfileCollection

Author(s)

Andrew G. Brown.


Uniqueness within a SoilProfileCollection via MD5 Hash

Description

Unique profiles within a SoilProfileCollection using and MD5 hash of select horizon and / or site level attributes.

Usage

## S4 method for signature 'SoilProfileCollection'
unique(x, vars, SPC = TRUE)

Arguments

x

a SoilProfileCollection

vars

Variables to consider in uniqueness.

SPC

logical return a SoilProfileCollection when TRUE, otherwise vector of profile indices

Value

SoilProfileCollection when SPC = TRUE, otherwise a vector of integers

Examples

# an example soil profile
  x <- data.frame(
    id = 'A',
    name = c('A', 'E', 'Bhs', 'Bt1', 'Bt2', 'BC', 'C'),
    top = c(0, 10, 20, 30, 40, 50, 100),
    bottom = c(10, 20, 30, 40, 50, 100, 125),
    z = c(8, 5, 3, 7, 10, 2, 12)
  )
  
  # init SPC
  depths(x) <- id ~ top + bottom
  
  # horizon depth variability for simulation
  horizons(x)$.sd <- 2
  
  # duplicate several times
  x.dupes <- duplicate(x, times = 5)
  
  # simulate some new profiles based on example
  x.sim <- perturb(x, n = 5, thickness.attr = '.sd')
  
  # graphical check
  plotSPC(x.dupes, name.style = 'center-center')
  plotSPC(x.sim, name.style = 'center-center')
  
  # inspect unique results
  plotSPC(unique(x.dupes, vars = c('top', 'bottom')), name.style = 'center-center')
  
  # uniqueness is a function of variable selection
  plotSPC(unique(x.sim, vars = c('top', 'bottom')), name.style = 'center-center')
  plotSPC(unique(x.sim, vars = c('name')), name.style = 'center-center')

Unroll Genetic Horizons

Description

Generate a discretized vector of genetic horizons along a user-defined pattern.

Usage

unroll(top, bottom, prop, max_depth, bottom_padding_value = NA, strict = FALSE)

Arguments

top

vector of upper horizon boundaries, must be an integer

bottom

vector of lower horizon boundaries, must be an integer

prop

vector of some property to be "unrolled" over a regular sequence

max_depth

maximum depth to which missing data is padded with NA

bottom_padding_value

value to use when padding missing data

strict

should horizons be strictly checked for self-consistency? defaults to FALSE

Details

This function is used internally by several higher-level components of the aqp package. Basic error checking is performed to make sure that bottom and top horizon boundaries make sense. Note that the horizons should be sorted according to depth before using this function. The max_depth argument is used to specify the maximum depth of profiles within a collection, so that data from any profile shallower than this depth is padded with NA.

Value

a vector of "unrolled" property values

Author(s)

Dylan E. Beaudette

References

https://casoilresource.lawr.ucdavis.edu/

Examples

data(sp1)

# subset a single soil profile:
sp1.1 <- subset(sp1, subset=id == 'P001')

# demonstrate how this function works
x <- with(sp1.1, unroll(top, bottom, prop, max_depth=50))
plot(x, 1:length(x), ylim=c(90,0), type='b', cex=0.5)

US State Soils

Description

A listing of the 50 US state soils, along with Puerto Rico and Virgin Islands.

Usage

data(us.state.soils)

Format

state

state name

abbreviated

abbreviated state name

series

soil series name


Check for valid spatial reference of profiles

Description

Are coordinate column names defined in metadata and existing in the SoilProfileCollection?

Usage

## S4 method for signature 'SoilProfileCollection'
validSpatialData(object)

Arguments

object

a SoilProfileCollection

Value

logical TRUE if column names are defined and correspond to existing data


Inflate / Deflate Horizon Thickness

Description

This function applies a warping factor to the horizons of a single-profile SoilProfileCollection object. Warping values >1 will inflate horizon thickness, values <1 will deflate horizon thickness.

Usage

warpHorizons(x, fact, updateProfileID = TRUE, suffix = "-w")

Arguments

x

a SoilProfileCollection object

fact

numeric or character; warping factor specified as a single numeric value, vector of numeric values (length = nrow(x)), or column name of a horizon level attribute containing numeric values

updateProfileID

logical; modify profile IDs

suffix

character; suffix added to profile IDs when updateProfileID = TRUE

Value

a modified version of x, SoilProfileCollection object

Author(s)

D.E. Beaudette and S.W. Salley

Examples

# create an example profile
s <- quickSPC('p1:AA|Bt1Bt1Bt1|Bt2Bt2B|Bt3|Cr|RRRRR')

# warp each horizon
# values > 1: inflation
# values < 1: deflation (erosion / compaction)
s.w <- warpHorizons(s, fact = c(1.3, 0.7, 0.8, 1, 1, 1))

# combine original + warped
x <- combine(s, s.w)

# compute profile bottom depths
.bottoms <- x[, , .LAST, .BOTTOM]

# change in total depth after warping
# used to vertically offset the warped profile
.yoff <- c(0, .bottoms[1] - .bottoms[2])

# depths for line segments connecting horizon tops
.y1 <- x[1, , .TOP]
.y2 <- x[2, , .TOP] + .yoff[2]

# sketches
# can't automatically add a depth axis
par(mar = c(0.5, 0, 0, 2))
plotSPC(
  x, 
  name.style = 'center-center', 
  cex.names = 0.8, 
  width = 0.2, 
  max.depth = 150, 
  depth.axis = list(line = -3), 
  y.offset = .yoff
)

# illustrate warping with arrows
arrows(x0 = 1 + 0.25, y0 = .y1, x1 = 2 - 0.25, y1 = .y2, len = 0.1, col = 2)

# manually add depth axis
axis(side = 4, line = -3.5, las = 1, at = seq(from = 0, to = 150, by = 25))


# apply to multiple profiles
# text-based template
.template <- c(
'P1:AAA|BwBwBwBw|CCCCCCC|CdCdCdCd',
'P2:ApAp|AA|E|BhsBhs|Bw1Bw1|CCCCC',
'P3: A|Bt1Bt1Bt1|Bt2Bt2Bt2|Bt3|Cr|RRRRR'
)

# each horizon label is '10' depth-units (default)
s <- quickSPC(.template)

# random warping factor, by horizon
s$f <- runif(n = nrow(s), min = 0.8, max = 1.2)

# warp horizons by profile, result is a list of SPCs
s.w <- profileApply(s, FUN = warpHorizons, fact = 'f')

# flatten list -> SoilProfileCollection
s.w <- combine(s.w)

# combine with original SPC
x <- combine(s, s.w)

# sketches 
par(mar = c(0.5, 0, 0, 2.5))
plotSPC(
  x,
  name.style = 'center-center',
  cex.names = 0.8,
  width = 0.3,
  max.depth = 165,
  depth.axis = list(line = -2)
)

Example Data from Wilson et al. 2022

Description

An example SoilProfileCollection, derived from Wilson et al., 2022. Select data extracted from Appendix tables.

Usage

data(wilson2022)

Format

A SoilProfileCollection with the following elements. Total elemental analysis by lithium borate fusion.

Horizon level attributes:

  • name: horizon designation

  • Al2O3: total Al (wt %)

  • Fe2O3: total Fe (wt %)

  • K2O: total K (wt %)

  • MgO: total Mg (wt %)

  • Na2O: total Na (wt %)

  • P2O5: total P (wt %)

  • SiO2: total Si (wt %)

  • CaO: total Ca(wt %)

  • Alo: Oxalate Extractable Al (g/kg)

  • Feo: Oxalate Extractable Fe (g/kg)

  • Fed: Dithionite extractable Fe (g/kg)

  • Fed_minus_Feo: Crystalline Fe (hydr)oxides (g/kg)

  • CIA: Chemical Index of Alteration, see original paper (ratio, unitless)

  • Fed_div_Fet: (ratio, unitless)

  • Fet: Total Fe from lithium borate fusion (g/kg)

  • resin_Pi: Hedley phosphorus fractions (mg/kg)

  • NaHCO3_Pi: Hedley phosphorus fractions (mg/kg)

  • labile_Pi: Sum of resin Pi and NaHCO3 Pi (mg/kg)

  • NaCO3_Po: Hedley phosphorus fractions (mg/kg)

  • NaOH_Pi: Hedley phosphorus fractions (mg/kg)

  • NaOH_Po: Hedley phosphorus fractions (mg/kg)

  • Ca_Pi: Hedley phosphorus fractions (mg/kg)

  • organic_P: Sum of NaHCO3 and NaOH Po fractions (mg/kg)

  • total_P: Total P from lithium borate fusion (mg/kg)

  • occluded_P: Difference between total P and sum of Hedley P fractions (mg/kg)

  • top: horizon top depth (cm)

  • bottom: horizon bottom depth (cm)

  • pedonID: pedon ID (serial number)

Site level attributes:

  • pm: parent material group

  • biome: biome

References

Stewart G. Wilson, Randy A. Dahlgren, Andrew J. Margenot, Craig Rasmussen, Anthony T. O'Geen. 2022. Expanding the Paradigm: The influence of climate and lithology on soil phosphorus, Geoderma: 421. doi:10.1016/j.geoderma.2022.115809

Examples

data(wilson2022)

groupedProfilePlot(wilson2022, groups = 'pm', 
group.name.offset = -15, label = 'biome', 
name.style = 'center-center', color = 'CIA', 
cex.names = 0.66, cex.id = 0.66, width = 0.3)

groupedProfilePlot(wilson2022, groups = 'biome', 
group.name.offset = -15, label = 'pm', 
name.style = 'center-center', color = 'Fet', 
cex.names = 0.66, cex.id = 0.66, width = 0.3)

Format a LaTeX table with results

Description

Format a LaTeX table with results

Usage

xtableTauW(result.tau, file.name = "tau_results_table.tex")

Arguments

result.tau

results returned by tauW

file.name

name of file to write output TeX file; Default: file.name="tau_results_table.tex"